Abstract:
A medical electrical lead includes an insulative lead body extending from a distal region to a proximal region and a conductor disposed within the insulative lead body and extending from the proximal region to the distal region. An electrode is disposed on the insulative lead body and is in electrical contact with the conductor. The medical electrical lead also includes a cross-linked hydrophilic polymer coating disposed over at least a portion of the electrode. The cross-linked hydrophilic polymer coating includes a fibrous matrix comprising a plurality of discrete fibers and pores formed between at least a portion of the fibers and a hydrophilic polyethylene glycol-containing hydrogel network disposed within the pores of the fibrous matrix.
Abstract:
A method of making a feed-thru connector assembly includes inserting a conductor within an opening within a housing of a pulse generator and dispensing a sealant in a gap between the conductor and portions of the housing adjacent to the conductor that define the opening of the housing and curing the sealant to form a seal comprising a polyisobutylene cross-linked network.
Abstract:
A method of making a feed-thru connector assembly includes inserting a conductor within an opening within a housing of a pulse generator and dispensing a sealant in a gap between the conductor and portions of the housing adjacent to the conductor that define the opening of the housing and curing the sealant to form a seal comprising a polyisobutylene cross-linked network.
Abstract:
A method of making a feed-thru connector assembly includes inserting a conductor within an opening within a housing of a pulse generator and dispensing a sealant in a gap between the conductor and portions of the housing adjacent to the conductor that define the opening of the housing and curing the sealant to form a seal comprising a polyisobutylene cross-linked network.
Abstract:
A medical electrical lead includes an insulative lead body extending from a distal region to a proximal region and a conductor disposed within the insulative lead body and extending from the proximal region to the distal region. An electrode is disposed on the insulative lead body and is in electrical contact with the conductor. The medical electrical lead also includes a cross-linked hydrophilic polymer coating disposed over at least a portion of the electrode. The cross-linked hydrophilic polymer coating includes a fibrous matrix comprising a plurality of discrete fibers and pores formed between at least a portion of the fibers and a hydrophilic polyethylene glycol-containing hydrogel network disposed within the pores of the fibrous matrix.
Abstract:
A medical electrical lead includes an insulative lead body extending from a distal region to a proximal region and a conductor disposed within the insulative lead body and extending from the proximal region to the distal region. An electrode is disposed on the insulative lead body and is in electrical contact with the conductor. The medical electrical lead also includes a cross-linked hydrophilic polymer coating disposed over at least a portion of the electrode. The cross-linked hydrophilic polymer coating includes a fibrous matrix comprising a plurality of discrete fibers and pores formed between at least a portion of the fibers and a hydrophilic polyethylene glycol-containing hydrogel network disposed within the pores of the fibrous matrix.
Abstract:
A biocompatible polyisobutylene urethane, urea, and urethane/urea copolymer including hard segments, soft segments and that is free of urethane, urea or urethane/urea solvents. The hard include diisocyanate residue. The soft segments include at least one polyisobutylene diol or diamine and optionally a polyether diol.