Abstract:
An additive includes a calcium source, a suspension agent, a castor oil, and optionally a castor supplement/replacement. In many embodiments, polyalphaolefin is included. The preferred suspension agents are fatty acid esters, triglycerides or other, with a pour point/melt point from about 5 degrees C. to about 50 degrees C. Suspension agents of particular interest are: 1) polymerized ester(s) of ricinoleic acid (polymerized ester(s) of 12-Hydroxy Oleic Acid), 2) polymerized ester(s) of 12-Hydroxy Stearic Acid, 3) waxy esters of ricinoleic acid, 4) palm oil, 5) palm-olein, 6) coconut oil, and 7) jojoba oil. The waxy esters may result from polymerization of shorter carboxylic acid monomers. The additive may be used in fuels to improve combustion engine performance in terms of efficiency and emissions. Polyalphaolefin may be important, especially in additive formulations for diesel fuels, for NOx reduction. The additive may be used in lubricants that improve performance of both ferrous and non-ferrous metal components of engines, guns, or other machinery. The additive also may be used in cutting fluids for machining and fabrication. Used in conjunction with other additives, embodiments of the invention may be used to lower pour points in oils, esters and other similar products.
Abstract:
A valve system lifter for combustion engines includes a hard metal face pad connected to a lower-grade metal lifter body. The connecting material is one or more materials that are different from both the lifter body and the face pad. Preferably, the connecting material is a silver-and copper-containing material, that may take the form of a wafer with silver or silver alloy layered over a copper alloy core. The preferred body includes one or more ferrous compounds, and the preferred face includes tungsten carbide. The resulting lifter is resistant to the cracking, breakage, and wear that plague conventional lifters, due to the harsh temperature and impact environment of the lifter. The resulting lifter may be used to reduce the need for change-out and down-time in many engines.
Abstract:
Methods of making fuel additives and fuel additive formulations are presented that include degummed lipid acid or lipid ester; a bean oil and/or seed oil; a pour point depressant; and glycerol monooleate or glycerol monostearate. The fuel additives can be added to any fuel and result in advantages such as an increased shelf life.
Abstract:
An additive includes polyalphaolefin (PAO), a calcium source, and one or more oils from, or components derived from, beans, seeds, or roots, such as castor oil, jojoba oil, rape (canola) seed oil, palm oil, sunflower oil, soybean oil, etc. The preferred composition of matter comprises a calcium source, PAO, castor oil, jojoba oil, and a soy methyl ester and/or rape seed methyl or ethyl ester. The additive may be used in fuels that improve combustion engine performance in terms of efficiency and emissions. The additive may be used in lubricants that improve performance of both ferrous and non-ferrous metal components of engines, guns, or other machinery. The additive also may be used in cutting fluids for machining and fabrication. Used in conjunction with other additives, embodiments of the invention may be used, to lower pour points in oils, esters and other similar products.
Abstract:
An additive includes polyalphaolefin (PAO), a calcium source, and one or more plant oils from, or components derived from, beans, seeds, or roots, such as castor oil, jojoba oil, rape (canola) seed oil, palm oil, coconut oil, sunflower oil, soybean oil, etc. The preferred composition of matter comprises a calcium source, PAO, castor oil, jojoba oil, and a soy methyl ester and/or rape seed oil/ester. The additive may be used in fuels that improve combustion engine performance in terms of efficiency and emissions. The additive may be used in lubricants that improve performance of both ferrous and non-ferrous metal components of engines, guns, or other machinery. The additive also may be used in cutting fluids for machining and fabrication. Used in conjunction with other additives, embodiments of the invention may be used to lower pour points in oils, esters and other similar products.
Abstract:
A valve system lifter for combustion engines includes a hard metal face pad connected to a lower-grade metal lifter body. The connecting material is one or more materials that are different from both the lifter body and the face pad. Preferably, the connecting material is a silver- and copper-containing material, that may take the form of a wafer with silver or silver alloy layered over a copper alloy core. The preferred body includes one or more ferrous compounds, and the preferred face includes tungsten carbide. The resulting lifter is resistant to the cracking, breakage, and wear that plague conventional lifters, due to the harsh temperature and impact environment of the lifter. The resulting lifter may be used to reduce the need for change-out and down-time in many engines.