Abstract:
This patent describes formaldehyde free or formaldehyde reduced binders useful, for example, in a fiber based composite material such as glass or other mineral fiber insulation, non-woven fabric or wood-based board. In one example, melamine is used as an acidic solution or a salt. The salt or solution is used to create an aqueous binder with other components such as a polyol and a crosslinker. A preferred polyol is a nanoparticle comprising high molecular weight starch. In other examples, binders include mixtures of a polyol with urea and a crosslinker. In other examples, a multi-component nanoparticle is made by reacting a polyol such as starch in an extruder with an insolubilizer such as melamine or urea. The resulting particles are mixed with water, optionally with other components such as an additional crosslinker, to create an aqueous binder.
Abstract:
A delivery device for a active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders, such as cancer. The delivery device survives for a period of time in the body sufficient to allow for transport and uptake of the delivery device into targeted cells. The degree of crosslinking can provide a desired release profile of the active agent at, near or inside the target cells. The nanoparticles may be made by applying a high shear force in the presence of a cross linker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water.
Abstract:
A delivery device for a active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders, such as cancer. The delivery device survives for a period of time in the body sufficient to allow for transport and uptake of the delivery device into targeted cells. The degree of crosslinking can provide a desired release profile of the active agent at, near or inside the target cells. The nanoparticles may be made by applying a high shear force in the presence of a cross linker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water.
Abstract:
A curable aqueous binder composition comprising sheared or extruded cross linked starch particles and a crosslinking agent for use in the formation of composite materials such as mineral, natural organic or synthetic fibre products including mineral fibre insulation, non-woven mats, fibreglass insulation and related glass fibre products as well as wood based products and construction materials. In one application the curable aqueous starch binder composition may be blended with a second non-formaldehyde resin to make fibreglass insulation. In another application the curable aqueous starch binder composition may be mixed into a formaldehyde based resin to make fibreglass roof shingles.