Abstract:
A first hydroprocessed product and a second hydroprocessed product produced from a multi-stage process for upgrading pyrolysis tar, such as steam cracker tar, are provided herein. Fuel blends including the first hydroprocessed product and/or the second hydroprocessed product are also provided herein as well as methods of lowering pour point of a gas oil using the first hydroprocessed product and the second hydroprocessed product.
Abstract:
A process for selective isolation of high molecular weight (˜1230 Daltons) naphthenic acids (Arn acids). The process includes providing a polymeric resin with a bound a quaternary amino group and applying a crude oil sample containing Arn acids to the polymeric resin. A first wash of an organic solvent is applied to the sample followed by a second wash of a polar organic solvent mixture. The first two washes remove unwanted crude oil compositions while the Arn acids are bound to the quaternary amino groups. A third wash of acidified organic solvent removes the Arn acids from the polymeric resin, thereby forming an elute comprising the Arn acids and the acidified organic solvent. The acidified organic solve is then evaporated isolating the Arn acids from the crude oil sample.
Abstract:
Marine fuel oil compositions are provided that exhibit unexpectedly high cetane numbers after addition of a cetane improver. Methods of making such compositions are also provided. The unexpected nature of the marine fuel oil compositions is based in part on the ability to achieve a substantial improvement in estimated cetane number by addition of a cetane improver to a hydrocarbonaceous composition with a natural estimated cetane number of less than 35. These unexpectedly high increases in estimated cetane number for fuels or fuel blending components with low natural estimated cetane numbers can allow for production of fuel compositions with desirable combustion characteristics while also maintaining a higher level of aromatic compounds and/or reducing or minimizing the amount of distillate boiling range components in the fuel or fuel blending component.
Abstract:
A method for selective extraction of naphthenic acids from an acidic crude oil, including: providing an acidic crude oil including naphthenic acids and having a total acid number (TAN) greater than 0.4; mixing the acidic crude oil with a first aqueous solution including water and a weak base to extract a portion of naphthenic acids from the acidic crude oil thereby creating a second aqueous solution containing a mixture of the portion of naphthenic acids, the water and the weak base in an emulsion; separating the second aqueous solution from the emulsion; wherein the second aqueous solution contains an additional portion of the acidic crude oil; adding a salt to the second aqueous solution, thereby causing the additional portion of the acidic crude oil to separate from the second aqueous solution; removing the additional portion of the acidic crude oil from the second aqueous solution; and extracting the portion of the naphthenic acids from the second aqueous solution.
Abstract:
Marine fuel oil compositions are provided that exhibit unexpectedly high cetane numbers after addition of a cetane improver. Methods of making such compositions are also provided. The unexpected nature of the marine fuel oil compositions is based in part on the ability to achieve a substantial improvement in estimated cetane number by addition of a cetane improver to a hydrocarbonaceous composition with a natural estimated cetane number of less than 35. These unexpectedly high increases in estimated cetane number for fuels or fuel blending components with low natural estimated cetane numbers can allow for production of fuel compositions with desirable combustion characteristics while also maintaining a higher level of aromatic compounds and/or reducing or minimizing the amount of distillate boiling range components in the fuel or fuel blending component.
Abstract:
A first hydroprocessed product and a second hydroprocessed product produced from a multi-stage process for upgrading pyrolysis tar, such as steam cracker tar, are provided herein. Fuel blends including the first hydroprocessed product and/or the second hydroprocessed product are also provided herein as well as methods of lowering pour point of a gas oil using the first hydroprocessed product and the second hydroprocessed product.
Abstract:
A method to determine the model-of-composition of a vacuum resid in which the resid is separated into fractions including the DAO fraction which is then separated into chemical classes including saturates, aromatics, sulfides and polars by a combination of soft ionization methods. The results of the ionization analysis are reconciled with other analysis such as bulk analysis, then consolidated to generate the modeol-of composition.
Abstract:
A method for characterizing the saturates portion of a petroleum or hydrocarbon sample that includes compounds with boiling points of 1000° F. (538° C.) or higher includes use of laser desorption ionization (LDI) to desorb and vaporize petroleum saturates into the gas phase. After ionization, the saturate compounds cations can be detected using mass spectrometry. The mass spectrum generated from the ionized saturated compounds is then characterized by assigning molecular formulas to any “detected” masses that exhibit a peak with an intensity greater than a defined signal to noise threshold. After making the molecular assignments, the abundance of each assigned molecule can be determined based on the signal magnitude of the peaks in the mass spectrum. The assigned molecules and the corresponding abundances can then be grouped based on a variety of factors.