Abstract:
A method for producing a conductive film having a substrate and a conductive layer disposed on the substrate has a first step of forming a precursor layer on the substrate, the precursor layer including a metal component or its precursor, a water-insoluble polymer X having a cross-linking group, a water-insoluble polymer Y having a reactive group that reacts with the cross-linking group, and a water-soluble polymer Z different from polymer X and polymer Y; a second step of reacting the cross-linking group in the water-insoluble polymer X with the reactive group in the water-insoluble polymer Y; and a third step of forming the conductive layer by removing the water-soluble polymer Z.
Abstract:
External connection terminals in a conductive film and circuit-side terminals in a flexible circuit are respectively arranged in a first direction and are disposed through an anisotropic conductive membrane so as to at least partially overlap each other, the conductive film has detection electrodes and lead wires respectively connecting the detection electrodes to the external connection terminals, at least two external connection terminals have connection portions with the lead wires disposed at different locations, and, in each external connection terminal, an overlapping region between the circuit-side terminal and the anisotropic conductive membrane has ends in a second direction orthogonal to the first direction, and a width W1 of a first end in the first direction being located on a connection portion side between the external connection terminal and the lead wire is smaller than a width W2 in the first direction of the external connection terminal overlapping the first end.
Abstract:
The conductive film is arranged on the support and contains a binder and a metal portion, in which a position at which the contour line reaches the metal portion included in the thin conductive wire is set as an upper end position, and an average area ratio VA of the metal portion in a region ranging from the upper end position to 100 nm toward the support side is 1% or more and less than 50%, and a position at which the contour line reaches the thin conductive wire does not include the metal portion is set to a lower end position, and an average area ratio VM1 of the metal portion in a region ranging from a middle position between the upper end position and the lower end position to 50 nm toward the support side and to 50 nm toward the surface X side is 50% or more.
Abstract:
A manufacturing method of a conductive sheet includes: a step A of forming a silver halide-containing photosensitive layer, which contains silver halide, gelatin, and a polymer different from the gelatin and in which a mass ratio (Y/X) of a mass Y of the polymer to a mass X of the gelatin is equal to or greater than 0.1, on a support; a step B of forming conductive portions containing metal silver by performing exposure and then development treatment on the silver halide-containing photosensitive layer; and a step C of treating the support having the conductive portions with an oxidant which has a standard electrode potential of equal to or greater than +1.5 V and decomposes the gelatin.
Abstract:
A transparent conductive film comprises a transparent substrate and a metal wiring portion formed thereon. A thin metal wire contained in an electrode portion in the metal wiring portion has a surface shape satisfying the condition of Ra2/Sm>0.01 μm and has a metal volume content of 35% or more. Ra represents an arithmetic average roughness in micrometers and is equal to or smaller than the thickness of a metal wiring located in a position where the surface roughness is measured. Sm represents an average distance between convex portions and is 0.01 μm or more.
Abstract:
A transparent conductive film comprises a transparent substrate and a metal wiring portion formed thereon. A thin metal wire contained in an electrode portion in the metal wiring portion has a surface shape satisfying the condition of Ra2/Sm>0.01 μm and has a metal volume content of 35% or more. Ra represents an arithmetic average roughness in micrometers and is equal to or smaller than the thickness of a metal wiring located in a position where the surface roughness is measured. Sm represents an average distance between convex portions and is 0.01 μm or more.
Abstract:
The conductive sheet includes a support and a conductive portion which is disposed on the support and composed of thin conductive wires containing metal silver and gelatin, in which gelatin is substantially not contained between the thin conductive wires on the support, and a volume ratio (A/B) of a volume A of the metal silver to a volume B of the gelatin in the thin conductive wires is 0.3 to 10.0. In the conductive sheet, the occurrence of ion migration between thin conductive wires is further inhibited. A manufacturing method of the conductive sheet and a touch panel including the conductive sheet are also provided.