Abstract:
A method of removing stationary objects from hyperspectral imagery, includes among other things, collecting a series of hyperspectral images of a target scene; determining at least one first hyperspectral image having no moving or new objects in the target scene; selecting the at least one first hyperspectral image; determining at least one second hyperspectral image having moving objects in the target scene; and subtracting the at least one first hyperspectral image from the at least one second hyperspectral image to create a background-subtracted hyperspectral image.
Abstract:
A method of communicating data between at least two coprocessors in a single computing environment wherein one of the coprocessors is a transmitting processor and the other of the coprocessors is a receiving processor and the single computing environment includes a memory accessible by the coprocessors includes, among other things, determining in the transmitting processor the size of data to be communicated, attaching the data to a message and transmitting the message to the receiving processor if the size of the data is below or equal to a predetermined threshold value, and transmitting to the receiving processor a pointer that points to a location of the data in the memory if the size of the data is above the predetermined threshold value.
Abstract:
A method of referencing an imaged object includes, among other things, obtaining a series of images, observing key characteristics of the object in each of the series of images, associating the observed key characteristics with the object; and assigning a unique identifier to the object based upon the associated key characteristics. The series of images includes spectral and spatial imagery. Some of the key characteristics are in the spectral imagery and some of the key characteristics are in the spatial imagery.
Abstract:
A method of tracking motion of at least one object of a group of moving objects using hyperspectral imaging includes, among other things, obtaining a series of hyperspectral image frames; comparing each frame in the series to a template to determine changes in the image between frames; identifying a group of pixels in each frame associated with the changes; identifying changes as motion of the moving objects; correlating the pixel groups frame to frame to spatially determine at least one parameter of the motion of the objects; and correlating the pixel groups with a spectral reflectance profile associated with the at least one object wherein the track of the at least one object is distinguishable from the tracks of other moving objects.
Abstract:
A method of removing a hyperspectral signature from at least one hyperspectral image, includes among other things, selecting a hyperspectral signature and determining a dissimilarity value between each pixel in the at least one hyperspectral image and the selected at least one hyperspectral signature. If the dissimilarity value between the signature of a given pixel in the at least one hyperspectral image and the selected at least one hyperspectral signature is less than a predetermined threshold value then the value of the signature for the given pixel is set to zero to create a signature-subtracted hyperspectral image.
Abstract:
A method of tracking motion of at least one object of a group of moving objects using hyperspectral imaging includes, among other things, obtaining a series of hyperspectral image frames; comparing each frame in the series to a template to determine changes in the image between frames; identifying a group of pixels in each frame associated with the changes; identifying changes as motion of the moving objects; correlating the pixel groups frame to frame to spatially determine at least one parameter of the motion of the objects; and correlating the pixel groups with a spectral reflectance profile associated with the at least one object wherein the track of the at least one object is distinguishable from the tracks of other moving objects.
Abstract:
A method of referencing an imaged object includes, among other things, obtaining a series of images, observing key characteristics of the object in each of the series of images, associating the observed key characteristics with the object; and assigning a unique identifier to the object based upon the associated key characteristics. The series of images includes spectral and spatial imagery. Some of the key characteristics are in the spectral imagery and some of the key characteristics are in the spatial imagery.
Abstract:
A method of communicating data between at least two coprocessors in a single computing environment wherein one of the coprocessors is a transmitting processor and the other of the coprocessors is a receiving processor and the single computing environment includes a memory accessible by the coprocessors includes, among other things, determining in the transmitting processor the size of data to be communicated, attaching the data to a message and transmitting the message to the receiving processor if the size of the data is below or equal to a predetermined threshold value, and transmitting to the receiving processor a pointer that points to a location of the data in the memory if the size of the data is above the predetermined threshold value.
Abstract:
A method of removing a hyperspectral signature from at least one hyperspectral image, includes among other things, selecting a hyperspectral signature and determining a dissimilarity value between each pixel in the at least one hyperspectral image and the selected at least one hyperspectral signature. If the dissimilarity value between the signature of a given pixel in the at least one hyperspectral image and the selected at least one hyperspectral signature is less than a predetermined threshold value then the value of the signature for the given pixel is set to zero to create a signature-subtracted hyperspectral image.