Abstract:
A THIN, CONTINUOUS FILM IS FORMED ON A SUBSTRATE BY ULTRAVIOLET SURFACE PHOTOPOLYMERIZATION OF A MATERIAL IN THE GASEOUS PHASE. THE MATERIAL IS SELECTED FROM VARIOUS ANHYDRIDES AND DIANHYDRIDES. SUCH FILMS, WHICH CAN BE SELECTIVELY FORMED AS ELECTRICALLY INSULATING OR ELECTRICALLY CONDUCTIVE, ARE USEFUL AS COATINGS ON METALLIC AND NONMETALLIC SUBSTRATES, AND FOR CORROSION PROTECTION. THE ELECTRICALLY INSULATING FILMS ARE USEFUL FURTHER AS CAPACITOR DIELECTRICS, CRYOGENIC DEVICE INSULATION, INSULATION FOR MICROELECTRIC DEVICES, AND PRIMER OR INSULTION ON ELECTRICALLY CONDUCTIVE WIRE, WHILE THE ELECTRICALLY CONDUCTIVE FILMS CAN ALSO BE EMPLOYED AS CONDUCTIVE LAYERS IN MICROELECTRIC DEVICES.
Abstract:
Thin, continuous films can be formed on various substrates by the ultraviolet surface polymerization of the vapor of a Nsubstituted maleimide or bis-maleimide. The films are useful as coatings on metallic and non-metallic substrates, capacitor dielectrics, insulation for microelectric devices, insulation on electrically conductive wire, and for corrosion protection.
Abstract:
A device for oxygenating or dialyzing blood has elementary units comprising a heat exchanger close-coupled to a component exchanger comprising one or more frames having rectangular openings and a gas permeable membrane on each face. In the heat exchanger element, heat is transferred via conduction from a source or to a sink through a membrane to or from a flowing film of blood. Two confronting membranes define a thin passageway for blood in the component exchanger element and remote sides of the membranes confront a second passageway in which another fluid such as dialysate or oxygen enriched gas flows, the passageway containing an open support structure. The support structure distributes the gas uniformly and supports the membranes when the space between them is pressurized with blood. In preferred embodiments, there are provided two path thin film flows through the heat exchanger. In the gas exchanger, thermoplastically formed protuberances project integrally from the membranes into the blood space for precisely defining the blood film thickness. Also provided is a blood component exchanger including an open support structure shaped to provide two path thin film flows therethrough.