Abstract:
A laser device includes a first actuator configured to adjust an oscillation wavelength of pulse laser light; a second actuator configured to adjust a spectral line width of the pulse laser light; and a processor configured to determine a target spectral line width by reading data specifying a number of irradiation pulses of the pulse laser light with which one location of an irradiation receiving object is irradiated and a difference between a shortest wavelength and a longest wavelength, control the second actuator based on the target spectral line width, and control the first actuator so that the oscillation wavelength periodically changes every number of the irradiation pulses between the shortest wavelength and the longest wavelength.
Abstract:
A laser apparatus includes a first optical element, a second optical element, a first actuator configured to change a first wavelength component included in a pulse laser beam by changing a posture of the first optical element, a second actuator configured to change a second wavelength component included in the pulse laser beam by changing a posture of the second optical element, a first encoder configured to measure a position of the first actuator, a second encoder configured to measure a position of the second actuator, and a processor. The processor reads a first relation and a second relation and performs control of the first actuator based on the first relation and the position of the first actuator measured by the first encoder and control of the second actuator based on the second relation and the position of the second actuator measured by the second encoder.
Abstract:
A laser device (100) may include: a laser resonator (20, 30) configured to output pulsed laser light (L); an actuator (35, 36, 37) configured to change wavelength of the pulsed laser light; and a controller (110) configured to receive data of target wavelength for a plurality of pulses of the pulsed laser light before the pulsed laser light is output, and to control the actuator, based on the data of the target wavelength for the plurality of pulses, such that the wavelength of the pulsed laser light approaches the data of the target wavelength.
Abstract:
An excimer laser may include a frame, a base plate on which the frame is disposed, an excimer laser configured to oscillate and output laser light by discharge-pumping within a chamber containing a laser gas, an optical element that is mounted upon the frame and that is disposed in the optical path of the outputted laser light and a heat removal mechanism connected to both the frame and the base plate.
Abstract:
The line narrowed laser apparatus configured to perform a plurality of burst oscillations including a first burst oscillation and a second burst oscillation next to the first burst oscillation to output a pulse laser beam. The line narrowed laser apparatus comprises a laser resonator, a chamber provided in the laser resonator, a pair of electrodes provided in the chamber, an electric power source configured to apply a pulsed voltage to the pair of electrodes, a wavelength-selecting element provided in the laser resonator, a spectral width varying unit provided in the laser resonator, a wavelength variable unit configured to change a selected wavelength selected by the wavelength-selecting element, and a controller. The controller is configured to control the wavelength variable unit based on an amount of control of the spectral width varying unit in a period from a time of ending the first burst oscillation to a time of starting the second burst oscillation.
Abstract:
A narrowband laser apparatus may be provided with a laser resonator including optical elements for narrowing a spectral linewidth, a spectrometer configured to detect spectral intensity distributions of multiple pulses included in a pulsed laser beam output from the laser resonator, a spectral waveform producer configured to produce a spectral waveform by adding up the spectral intensity distributions of the multiple pulses, a device function storage configured to store a device function of the spectrometer, a wavelength frequency function generator configured to generate a wavelength frequency function which represents a frequency distribution of center wavelengths of the multiple pulses, and a deconvolution processor configured to perform deconvolution processing on the spectral waveform with the device function and the wavelength frequency function.
Abstract:
The line narrowed laser apparatus configured to perform a plurality of burst oscillations including a first burst oscillation and a second burst oscillation next to the first burst oscillation to output a pulse laser beam. The line narrowed laser apparatus comprises a laser resonator, a chamber provided in the laser resonator, a pair of electrodes provided in the chamber, an electric power source configured to apply pulsed voltage to the pair of electrodes, a wavelength selecting element provided in the laser resonator, a spectral width varying unit provided in the laser resonator, and a controller. The controller is configured to measure a duty in a predetermined period before starting the second burst oscillation and a length of a suspension period from a time of ending the first burst oscillation to a time of starting the second burst oscillation, and perform a first control of the spectral width varying unit based on the duty and the length of the suspension period.
Abstract:
There is provided a method of controlling the wavelength of a laser beam. The method includes measuring an absolute wavelength of the laser beam; calculating a difference between a reference wavelength and the absolute wavelength of the laser beam; and adjusting the reference wavelength of the laser beam based on the difference between the reference wavelength and the absolute wavelength of the laser beam, at an interval shorter than an interval for which the absolute wavelength of the laser beam is measured.
Abstract:
A line narrowing device includes first and second prisms disposed at positions different in a wavelength dispersion direction of any of the first and second prisms, a third prism disposed on the optical path of an optical beam and through which the beam width of the optical beam is enlarged and first and second parts of the optical beam are incident on the first and second prisms, respectively, a grating disposed across the optical path of the first part having passed through the first prism and the optical path of the second part having passed through the second prism, a first actuator configured to adjust the incident angle of the first part on the grating, a second actuator configured to adjust the incident angle of the second part on the grating, and a third actuator configured to adjust an energy ratio of the first and second parts.
Abstract:
A control method of a line narrowing gas laser device includes receiving a command of either a single-wavelength mode command or a multi-wavelength mode command from an external apparatus, and controlling the line narrowing gas laser device to generate pulse laser light in accordance with the command.