Abstract:
The present application relates generally to methods for growth of high quality graphene films. In particular, a method is provided for forming a graphene film using a modified chemical vapor deposition process using an oxygen-containing hydrocarbon liquid precursor. Desirably, the graphene films are a single-layer and have a single grain continuity of at least 1 μm2.
Abstract:
A method of fabricating a thin film resistor including providing a substrate, using a low-temperature pulsed-laser deposition process to deposit a titanium carbide (TiC) layer on the substrate, removing portions of the TiC layer with an etching process to leave a TiC pattern on the substrate, and depositing conductive material on opposite ends of the TiC pattern to provide a thin film resistor.
Abstract:
A method includes imparting energy to a target in an oxygen-containing atmosphere at room temperature to provide a substrate facing the target with a carbonaceous coating that includes nested carbon structures.
Abstract:
Reactive halogen-ion plasmas, having for example, generating chloride ions, generated from low-pressure halogen gases using a radio-frequency plasma are employed for producing low-friction carbon coatings, such as a pure carbon film, at or near room temperature on a bulk or thin film of a compound, such as titanium carbide.
Abstract:
Thin films of aluminum nitride are deposited at 350 K on silicon, GaAs, fused quartz, and KBr substrates using gas-phase 193 nm excimer laser photolysis of trimethylamine alane and ammonia precursors without a thermally induced or a spontaneous reaction between them, resulting in AlN thin films that are amorphous, smooth and featureless having a band gap of 5.8 eV, a refractive index of 2.0, a breakdown electric field breakdown of 10.sup.8 V/m, a low-frequency dielectric constant of 6.0-6.9, high-frequency dielectric constant of 3.9-4.0, well suited for many thin film applications.
Abstract:
A method of fabricating a thin film resistor including providing a substrate, using a low-temperature pulsed-laser deposition process to deposit a titanium carbide (TiC) layer on the substrate, removing portions of the TiC layer with an etching process to leave a TiC pattern on the substrate, and depositing conductive material on opposite ends of the TiC pattern to provide a thin film resistor.
Abstract:
Reactive halogen-ion plasmas, having for example, generating chloride ions, generated from low-pressure halogen gases using a radio-frequency plasma are employed for producing low-friction carbon coatings, such as a pure carbon film, at or near room temperature on a bulk or thin film of a compound, such as titanium carbide.
Abstract:
A technique is described for the removal of trace metal contaminants from organic dielectrics such as polyimide. Pulsed ultraviolet radiation is used to remove the contaminants from the dielectric, regardless of their chemical nature, by the process of ablation. The process allows prepatterned bulk metal features to be simultaneously exposed to the pulsed radiation and yet remain unaffected.
Abstract:
A method includes imparting energy to a target in an oxygen-containing atmosphere at room temperature to provide a substrate facing the target with a carbonaceous coating that includes nested carbon structures.
Abstract:
The present invention relies upon a free space magnetic field in a pulsed laser deposition (PLD) chamber for forming high quality thin films made from diverted ions from a plume evaporated from an ablated target illuminated by a pulsed laser beam. The magnetic field exerts a qv.times.B Lorentz force upon the ions that is orthogonal to the magnetic field and to their direction of travel in the plume, and curves the ions toward the substrate, while neutral particulates continue to pass by the substrate so that the large neutral particulates are not deposited on the substrate. A shield prevents the deposition of plume species in direct line of sight between the target and the substrate so that only charged ions curved by the magnet are deposited on the substrate. A permanent magnet is used to separate charged species from neutral species. The magnetic field deflects the charged species away from the primary direction of travel of the plume and toward the substrate for deposition of the charged ion species on the substrate. The method provides particulate-free films having improved crystallinity, uniformity and adhesion.