Abstract:
It has been found that the insertion of a copper laminate within CoFe, or a CoFe/NiFe composite, leads to higher values of CPP GMR and DRA. However, this type of structure exhibits very negative magnetostriction, in the range of high null10null6 to null10null5. This problem has been overcome by giving the copper laminates an oxygen exposure treatment When this is done, the free layer is found to have a very low positive magnetostriction constant. Additionally, the value of the magnetostriction constant can be adjusted by varying the thickness of the free layer and/or the position and number of the oxygen treated copper laminates.
Abstract:
A method for forming a bottom spin valve sensor having a synthetic antiferromagnetic pinned (SyAP) layer, antiferromagnetically coupled to a pinning layer, in which one of the layers of the SyAP is formed as a three layer lamination that contains a specularly reflecting oxide layer of FeTaO. The sensor formed according to this method has an extremely high GMR ratio and exhibits good pinning strength.
Abstract:
A method for forming an NiCr seed layer based bottom spin valve sensor element having a synthetic antiferromagnet pinned (SyAP) layer and a capping layer comprising either a single specularly reflecting nano-oxide layer (NOL) or a bi-layer comprising a non-metallic layer and a specularly reflecting nano-oxide layer and the sensor element so formed. The method of producing these sensor elements provides elements having higher GMR ratios and lower resistances than elements of the prior art.