Abstract:
The present disclosure describes a stacked integrated circuit system that includes two integrated circuit layers stacked on opposite sides of an interposer layer. The interposer layer may include at least one integrated circuit die and an interposer portion that includes a plurality of electrically conductive pillars arranged in a laterally patterned array within the interposer layer.
Abstract:
In some examples, a programmable electrical fuse includes at least one structural feature that increases a thermal gradient between an anode and a cathode of the programmable electrical fuse. For example, a device may include a semiconductor substrate, an electrically insulating layer overlying the semiconductor substrate, and a programmable electrical fuse overlying a portion of the electrically insulating layer. The programmable electrical fuse may include a cathode, an anode, and a conductor link connecting the cathode and the anode. The electrically insulating layer may define a first thickness between the semiconductor substrate and the cathode and a second thickness between the semiconductor substrate and the anode, and the first thickness being less than the second thickness.
Abstract:
The present disclosure describes a stacked integrated circuit system that includes two integrated circuit layers stacked on opposite sides of an interposer layer. The interposer layer may include at least one integrated circuit die and an interposer portion that includes a plurality of electrically conductive pillars arranged in a laterally patterned array within the interposer layer.
Abstract:
The present disclosure describes a stacked integrated circuit system that includes two integrated circuit layers stacked on opposite sides of an interposer layer. The interposer layer may include at least one integrated circuit die and an interposer portion that includes a plurality of electrically conductive pillars arranged in a laterally patterned array within the interposer layer.
Abstract:
The present disclosure describes a stacked integrated circuit system that includes two integrated circuit layers stacked on opposite sides of an interposer layer. The interposer layer may include at least one integrated circuit die and an interposer portion that includes a plurality of electrically conductive pillars arranged in a laterally patterned array within the interposer layer.
Abstract:
A semiconductor assembly including: a first semiconductor having a plurality of electrical contacts extending from an upper surface of the first semiconductor; a second semiconductor adjacent to the first semiconductor; and a mesh disposed between and affixed to the upper surface of the first semiconductor and the lower surface of the second semiconductor. A lower surface of the second semiconductor is electrically connected to the first semiconductor via the plurality of electrical contacts. The mesh comprises a plurality of interconnecting struts defining a plurality of openings, wherein the plurality of openings is configured to receive the plurality of electrical contacts.
Abstract:
In some examples, a programmable electrical fuse includes at least one structural feature that increases a thermal gradient between an anode and a cathode of the programmable electrical fuse. For example, a device may include a semiconductor substrate, an electrically insulating layer overlying the semiconductor substrate, and a programmable electrical fuse overlying a portion of the electrically insulating layer. The programmable electrical fuse may include a cathode, an anode, and a conductor link connecting the cathode and the anode. The electrically insulating layer may define a first thickness between the semiconductor substrate and the cathode and a second thickness between the semiconductor substrate and the anode, and the first thickness being less than the second thickness.