Abstract:
In an embodiment, a processor includes a logic to cause at least one core to operate with a power control cycle including a plurality of on times and a plurality of off times according to an ON-OFF keying protocol, where the off times each correspond to a maximum off time for a platform including the processor. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a logic to cause at least one core to operate with a power control cycle including a plurality of on times and a plurality of off times according to an ON-OFF keying protocol, where the off times each correspond to a maximum off time for a platform including the processor. Other embodiments are described and claimed.
Abstract:
A processor includes a front end, a decoder, an allocator, and a retirement unit. The decoder includes logic to identify an end-of-live-range (EOLR) indicator. The EOLR indicator specifies an architectural register and a location in code for which the architectural register is unused. The allocator includes logic to scan for a mapping of the architectural register to a physical register, based upon the EOLR indicator. The allocator also includes logic to generate a request to disassociate the architectural register from the physical register. The retirement unit includes logic to disassociate the architectural register from the physical register.
Abstract:
A translation lookaside buffer (TLB) having a fixed sub-TLB and a configurable sub-TLB and methods of using the TLB are provided. The TLB includes a fixed sub-TLB and a configurable sub-TLB. The fixed sub-TLB, during runtime, may store a first plurality of TLB entries corresponding to a first page size set. The configurable sub-TLB, during runtime, is configurable to store a second plurality of TLB entries of a second page size set. The second page size set includes at least a first page size of the first page size set and includes at least a second page size not of the first page size set.
Abstract:
A processor includes a translation lookaside buffer (TLB) to store a TLB entry, wherein the TLB entry comprises a first set of valid bits to identify if the first TLB entry corresponds to a virtual address from a memory access request, wherein the valid bits are set based on a first page size associated with the TLB entry from a first set of different page sizes assigned to a first probe group; and a control circuit to probe the TLB for each page size of the first set of different page sizes assigned to the first probe group in a single probe cycle to determine if the TLB entry corresponds to the virtual address from the memory access request.
Abstract:
An apparatus and method for scrubbing spin transfer torque (STT) memory. For example, one embodiment of a apparatus comprises: a memory subsystem including at least one spin transfer torque (STT) memory, the STT memory arranged into one or more entries; and a scrub engine to ensure that the entries of the STT contain valid data, the scrub engine including analysis and processing logic to determine, for each entry, whether a specified scrubbing interval has expired and, if so, then to invalidate the entry or re-fetch data for the entry from a source and, if the scrubbing interval has not expired, then to perform error detection and/or correction on the entry.
Abstract:
A processor includes a front end, a decoder, an allocator, and a retirement unit. The decoder includes logic to identify an end-of-live-range (EOLR) indicator. The EOLR indicator specifies an architectural register and a location in code for which the architectural register is unused. The allocator includes logic to scan for a mapping of the architectural register to a physical register, based upon the EOLR indicator. The allocator also includes logic to generate a request to disassociate the architectural register from the physical register. The retirement unit includes logic to disassociate the architectural register from the physical register.
Abstract:
In an embodiment, a processor includes a logic to cause at least one core to operate with a power control cycle including a plurality of on times and a plurality of off times according to an ON-OFF keying protocol, where the off times each correspond to a maximum off time for a platform including the processor. Other embodiments are described and claimed.
Abstract:
A collective communication apparatus and method for parallel computing systems. For example, one embodiment of an apparatus comprises a plurality of processor elements (PEs); collective interconnect logic to dynamically form a virtual collective interconnect (VCI) between the PEs at runtime without global communication among all of the PEs, the VCI defining a logical topology between the PEs in which each PE is directly communicatively coupled to a only a subset of the remaining PEs; and execution logic to execute collective operations across the PEs, wherein one or more of the PEs receive first results from a first portion of the subset of the remaining PEs, perform a portion of the collective operations, and provide second results to a second portion of the subset of the remaining PEs.
Abstract:
In one embodiment, a processor includes at least one sleep block and a central sleep controller. The at least one sleep block may include at least one execution unit, at least one processor component, and sleep logic. The central sleep controller may be to program the sleep logic to perform at least one sleep transition for the at least one sleep block, and to operate in a first sleep mode. The sleep logic may be to perform the at least one sleep transition for the at least one sleep block without waking the central sleep controller from the first sleep mode. Other embodiments are described and claimed.