Abstract:
In some embodiments, a pressure sensor comprises may comprise a housing, a flexible membrane which, together with the housing, forms a hermetically closed cavity, a sensor element arranged in the hermetically closed cavity, and a gaseous medium in the hermetically closed cavity. The sensor may measure an external pressure on the flexible membrane based on at least one of: a pressure of a gas in the hermetically closed cavity, and/or an amount of time of a time of flight of an optical pulse or a sound pulse emitted by the sensor element reflected from the flexible membrane.
Abstract:
A package which comprises a carrier, a transducer mounted on the carrier and configured for converting between a package-external property and an electric signal, a package housing at least partially housing at least one of the carrier and the transducer, and a sealing which forms at least part of the package housing for sealing between the package and a package-external body.
Abstract:
A pressure sensor comprises a housing, a flexible membrane which, together with the housing, forms a hermetically closed cavity, a sensor element arranged in the cavity, and a gaseous medium in the cavity.
Abstract:
Representative implementations of devices and techniques provide an improved signal receive time to a sensor component. The sensor component is enclosed within a package arranged to allow the sensor to potentially receive a signal in less time. The package may have a cavity, and the cavity may be at least partly filled with an acoustical transducer.
Abstract:
The present disclosure relates to an inductive angle and/or position sensor comprising a first sensor component and a second sensor component, which is movable relative thereto, wherein the first sensor component comprises an excitation coil and a receiving coil arrangement having two or more individual receiving coils, and wherein the second sensor component comprises an inductive target. The first sensor component comprises a semiconductor chip having an integrated circuit. The sensor comprises a housing, in which the semiconductor chip is arranged. The individual receiving coils of the receiving coil arrangement are configured in at least two structured metallization layers spaced apart from one another, which are arranged within the housing and/or outside on an outer surface of the housing.
Abstract:
A photoacoustic sensor device may include a housing and first and second ceramic cavity packages disposed in the housing. The first ceramic cavity package may include a first sidewall having a first set of electrical contact elements, a first cavity structure, and a light source electrically coupled to the first set of electrical contact elements. The second ceramic cavity package may include a second sidewall having a second set of electrical contact elements, a second cavity structure, and a photoacoustic detector electrically coupled to the second set of electrical contact elements. The first and second ceramic cavity packages may be arranged such that the light source and the photoacoustic detector face one another, and oriented such that the first and second sets of electrical contact elements align with electrical contact points of a PCB when the photoacoustic sensor device is positioned over the PCB for coupling to the PCB.
Abstract:
A microphone assembly is provided, wherein the pre-mold comprises a bent leadframe and a mold body, wherein the mold body is mold to at least partially encapsulate the bent leadframe to build the pre-mold comprising a cavity for accommodating a microphone, and wherein the pre-mold comprises a through-hole transmissive for sound waves.