Abstract:
A switching finger may operate in two or three states or positions and cooperate with a single motion source to achieve methods of operating an engine in corresponding two or three modes. The modes may include cylinder deactivation, main event or auxiliary modes, including lost motion braking, LIVC and EEVO. A follower for an engine valve train utilizes an adjustable support assembly that eliminates potential for partial engagement during operation. A lever engagement member or latch is disposed for movement on the follower body and interacts with a lever to provide a constant contact geometry. The latch may support the lever in one or more precise positions, or permit the lever to pivot free of the latch for complete lost motion, as in cylinder deactivation applications.
Abstract:
Systems and methods for actuating engine valves are disclosed. The systems may include primary and auxiliary rocker arms disposed adjacent to each other on a rocker arm shaft. The primary rocker arm may actuate engine valves for primary valve actuation motions, such as main exhaust events, in response to an input from a first valve train element, such as a cam. The auxiliary rocker arm may receive one or more auxiliary valve actuation motions, such as for engine braking, exhaust gas recirculation, and/or brake gas recirculation events, from a second valve train element to actuate one of the engine valves. Master and slave pistons may be provided in the primary rocker arm. The master piston may be actuated by the auxiliary rocker arm.
Abstract:
Systems and methods for controlling valves in valve actuation systems in internal combustion engines systems may be particularly suitable for sequencing valve motion in engine environments that combine cylinder deactivation and high-power density (HPD) engine braking. A main event motion system is configured to produce main event motion in one or more valve sets. An engine braking system produces engine braking motion and a cylinder deactivation system selectively deactivates main event motion of the intake and exhaust valves the valve set. A blocking system selectively prevents the cylinder deactivation system from deactivating main event motion of at least one intake valve during the engine braking operation. Thus, main event intake valve motions may be available for braking operations, such as HPD braking where main event intake valve motion may be used to enhance CR braking. One actuator can control deactivation of paired intake and exhaust main event motion.
Abstract:
A system for actuating at least two engine valves comprises a first rocker assembly operatively connected to a first valve actuation motion source and to a first engine valve. The first rocker assembly comprises a first lost motion component arranged in series with a first input rocker and a first output rocker. A second rocker assembly is operatively connected to a second valve actuation motion source and to a second engine valve. The second rocker assembly comprises at least one second rocker. The system further comprises a one-way coupling mechanism disposed between the first output rocker and the at least one second rocker such that second valve actuation motions are transferred from the at least one second rocker to the first output rocker, and first valve actuation motions are not transferred from the first output rocker to the at least one second rocker.
Abstract:
A switching finger follower for an engine valve train utilizes an adjustable support assembly that eliminates potential for partial engagement during operation. A lever engagement member or latch is disposed for movement on the follower body and interacts with a lever to provide a constant contact geometry. The finger follower may be configured as a lost motion device and may include a biasing assembly and a travel limiter. The latch may support the lever in at least one precise position and may support the lever in a second position for partial lost motion, or permit the lever to pivot free of the latch for complete lost motion, as in cylinder deactivation applications.
Abstract:
A valve bridge system comprises a valve bridge configured to extend between at least two engine valves of an internal combustion engine. In one embodiment, a valve bridge guide is operatively connected to the valve bridge and configured to extend between at least two valve springs respectively corresponding to the at least two engine valves, the valve bridge guide defining a surface conforming to a valve spring of the at least two valve springs. In another embodiment, the valve bridge guide may comprise at least a first member maintained in a first fixed position relative to and at a predetermined distance from the valve bridge. In both embodiments, the valve bridge guide is configured to avoid contact with the valve bridge in a controlled state, but to permit contact with valve bridge to resist uncontrolled movement of the valve bridge.
Abstract:
A third motion transfer mechanism transfers valve actuation motion from a second motion source to a first engine valve. A motion decoupler is configured to selectively discontinue the transfer of motion from a first motion transfer mechanism to the first engine valve. Furthermore, a reset mechanism is configured to selectively discontinue, based on operation of a second motion transfer mechanism, the transfer of motion from the third motion transfer mechanism to the first engine valve. The third motion transfer mechanism may comprise a master piston and a slave piston in fluid communication with each other via a hydraulic circuit, the master piston being configured to receive motion from the second motion source and the slave piston being configured to transfer motion to the first engine valve.