Abstract:
The present disclosure relates generally to the field of batteries and battery modules, and more specifically, relates to a system and method for manufacturing terminal assemblies for lithium-ion battery modules. A disclosed battery module includes a terminal block assembly that is secured to a polymer housing of the battery module. The terminal block assembly includes a terminal post having a post portion and a base portion that extends outward from a central axis of the post portion. The terminal block assembly also includes a bus bar coupled to the base portion of the terminal post without welding, wherein the bus bar includes a trough disposed near the terminal post. The terminal block assembly further includes a polymer portion overmolding at least the trough of the bus bar to form a drainage channel near the terminal post.
Abstract:
The present disclosure relates to a battery module having a housing and a stack of battery cells disposed in a receptacle area of the housing, where each battery cell has a top having a battery cell terminal and a bottom, where the top of the battery cells face outwardly away from the receptacle area. The battery module includes an integrated sensing and bus bar subassembly positioned against the stack of battery cells and has a carrier, a bus bar integrated onto the carrier, and a biasing member integrated onto the carrier. The bus bar electrically couples battery cells in an electrical arrangement, and the biasing member is between the top of each battery cell and the carrier, where the biasing member has a first material, more compliant than a second material of the carrier, and the biasing member biases the stack of battery cells inwardly toward the housing.
Abstract:
The present disclosure a battery module having electrochemical cells and a bus bar carrier. The bus bar carrier includes a finger having a first surface, a second surface opposite to the first surface and configured to be disposed proximate to a first electrochemical cell of the plurality of electrochemical cells, a thickness extending between the first surface and the second surface, an opening extending through the first surface, through the thickness, and through the second surface, and a cavity disposed adjacent to the opening and exposed through the second surface of the finger. The battery module also includes a lead wire passing through the opening from the first surface of the finger to the second surface of the finger, and a sensor coupled to the lead wire to enable communication between the sensor and the first electrochemical cell, wherein the sensor is disposed in the cavity.
Abstract:
The present disclosure relates generally to a battery module having a housing and a stack of battery cells disposed in the housing. Each battery cell has a battery cell terminal and a battery cell vent on an end of each battery cell, and the battery cell vent is configured to exhaust effluent into the housing. The battery module has a vent shield plate disposed in the housing and directly along an immediate vent path of the effluent, a first surface of the vent shield plate configured to direct the effluent to an opening between the shield plate and the housing, and a second surface of the vent shield plate opposite the first surface. The battery module also has a venting chamber coupled to the opening and at least partially defined by the second surface and a vent configured to direct the effluent out of the battery module.
Abstract:
Present embodiments include a lithium ion battery module having a lineup of prismatic lithium ion battery cells positioned within a cell receptacle area of a housing of the lithium ion battery module. The prismatic battery cells of the lineup are spaced apart from one another in a spaced arrangement by fixed protrusions extending from internal surfaces of the housing forming the cell receptacle area, and the fixed protrusions extend inwardly to form a plurality of discontinuous slots across a width of the cell receptacle area.
Abstract:
The present disclosure includes a battery module having a housing with a wall that includes an aperture in the wall. The battery module also includes an electrochemical cell having a terminal end and a base end opposite the terminal end. The electrochemical cell is disposed within the housing such that the base end is positioned proximate to the aperture of the wall. Further, a heat sink of the battery module is engaged with the aperture and includes cooling fins extending outwardly from the heat sink a first distance from an external surface of the wall. The battery module also includes feet of the housing extending outwardly from the wall a second distance from the external surface of the wall. The second distance is greater than the first distance.
Abstract:
The present disclosure a battery module having electrochemical cells and a bus bar carrier. The bus bar carrier includes a finger having a first surface, a second surface opposite to the first surface and configured to be disposed proximate to a first electrochemical cell of the plurality of electrochemical cells, a thickness extending between the first surface and the second surface, an opening extending through the first surface, through the thickness, and through the second surface, and a cavity disposed adjacent to the opening and exposed through the second surface of the finger. The battery module also includes a lead wire passing through the opening from the first surface of the finger to the second surface of the finger, and a sensor coupled to the lead wire to enable communication between the sensor and the first electrochemical cell, wherein the sensor is disposed in the cavity.
Abstract:
The present disclosure includes a battery module having a housing with a first end (having a cell receptacle region) and a second end opposite to the first end. The battery module includes a stack of electrochemical cells inserted through the cell receptacle region of the housing, disposed between the first end and the second end of the housing, and having terminal ends of all the electrochemical cells of the stack aligned in a planar area. The battery module includes a bus bar carrier disposed over the stack of electrochemical cells and within the cell receptacle region of the housing. The bus bar carrier includes bus bars disposed thereon that interface with the terminal ends. The battery module includes a layer of thermal epoxy disposed between the second end of the housing and a bottom side of the stack of electrochemical cells.
Abstract:
The present disclosure relates to a battery module having a housing with a first cover and a second cover. The battery module includes a plurality of lithium-ion (Li-ion) electrochemical cells disposed in the housing adjacent to the second cover. The battery module also includes a reinforcement column disposed within the housing that extends along a direction from the second cover to the first cover. The reinforcement column is positioned against the first cover and is coupled to a feature between the first and second covers, and the reinforcement column is configured to enhance a load bearing capacity of the battery module.
Abstract:
A battery module and a method of manufacture are provided. The battery module may include a printed circuit board (PCB) assembly. The PCB assembly may include a PCB designed to be disposed in a battery module for controlling operations of the battery module. The PCB may also include voltage sensing circuitry. In addition, the PCB assembly may include a bus bar cell interconnect. The bus bar cell interconnect may electrically couple batteries of the battery module. The PCB assembly may also include a voltage sense connection tab. The voltage sense connection tab may carry a voltage between a bus bar cell interconnect of the battery module and the voltage sensing circuitry on the PCB.