Abstract:
Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles having a Ni core and a Pt layer disposed on the surface of the Ni core, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.
Abstract:
The invention relates to heterogeneous catalysts comprising an organo-ruthenium complex immobilized to an aluminum-modified inorganic oxide by a chemical bond between a tetra-coordinated aluminum atom on a surface of the aluminum-modified inorganic oxide and an amino or imino nitrogen of the organo-ruthenium complex, methods of preparing the heterogeneous catalysts including immobilizing the organo-ruthenium complex to a tetra-coordinated aluminum atom on a surface of an inorganic oxide by reacting an amino or imino nitrogen of the organo-ruthenium complex and an aluminum-modified inorganic oxide, followed by a defined heat treatment, as well as methods for producing hydrogen from formic acid using the heterogeneous catalysts.
Abstract:
Embodiments of the present disclosure describe methods of preparing pre-catalysts that may be activated under methane to form catalysts for the hydrogenation of carbon dioxide to form olefins, among other chemical species. Embodiments of the present disclosure also describe methods of preparing catalysts and pre-catalysts, catalyst and pre-catalyst compositions, and methods of producing one or more chemical species using catalysts.
Abstract:
The present invention uses a cobalt catalyst for carbon dioxide reforming of lower alkanes to synthesis gas having a cobalt catalyst on an oxide support where the supported cobalt catalyst has been modified with a boron precursor. The boron-treated cobalt catalyst systems as described herein show significant increases in the conversion of CH4 and CO2 during the dry reforming of methane (DRM) reaction as compared to traditional catalysts. Described herein are supported catalysts and methods of using the catalysts for the dry reforming of methane to synthesis gas, with the supported catalysts in the present invention include a boron-treated cobalt catalyst disposed on an oxide support. Also described herein are processes for preparing the supported catalysts.
Abstract:
Embodiments of the present disclosure provide for methods that can be used to produce carbon nanotubes (hereinafter CNT) having an inner diameter about 5-55 nm, methods of tuning the inner diameter of CNTs (e.g., by adjusting reaction pressure), CNTs having an inner diameter of greater than 20 nm or more, and the like.
Abstract:
Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.
Abstract:
Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20° C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin structure: H4SiW12O40, H3PW12O40, H4SiMo12O40, or H3PMo12O40, can be when supported on silica.