Abstract:
An energy transfer system includes an adapter having a power terminal port with a plurality of power terminals and an intermediate adapter terminal port with a plurality of intermediate adapter terminals. Each of the plurality of intermediate adapter terminals is in direct electrical communication with one of the plurality of adapter terminals. The energy transfer system also includes an intermediate complementary port that is configured to mate with the intermediate adapter terminal port to establish electrical communication between the plurality of intermediate adapter terminals and a plurality of complementary intermediate terminals. The adapter terminal port is configured not to mate with the intermediate terminal port and not to mate with the intermediate complementary terminal port.
Abstract:
An electrical connector includes a first housing. A second housing is moveable relative to the first housing and includes a travel peg. The electrical connector also includes a lever. The lever includes two lever arms that are joined by a handle. Each of the lever arms is attached to the first housing and allows relative rotational movement of the lever about a lever axis. The lever may be moved from a pre-stage position to a final position. The lever engages the travel peg to move the second housing linearly in an insertion direction from a pre-stage position to a seated position relative to the first housing. The travel peg moves along a peg path when the second housing is moved from the pre-stage position to the seated position. The peg path is located between the lever axis and the handle.
Abstract:
An electrical connector includes a first housing with a plurality of first terminal slots. Each first terminal slot includes a first terminal lock. Each first terminal slot also includes a first end stop. The first end stops are part of the first housing. Each first terminal slot is configured to retain a first electrical terminal between the first terminal lock and the first end stop. The electrical connector also includes a first terminal position assurance. The first terminal position assurance includes a first terminal position assurance body. A plurality of first lock retainers extend from the first terminal position assurance body. The first lock retainers prevent the first terminal locks from moving to a release position. The first terminal position assurance body is located in the same plane as the first end stops.
Abstract:
An electrical connector includes a connector body and at least two electric terminals. A fuse is supported on the connector body and at least one of the electric terminals is supported by the fuse.
Abstract:
An electrical connector includes a first housing. A second housing is moveable relative to the first housing and includes a travel peg. The electrical connector also includes a lever. The lever includes two lever arms that are joined by a handle. Each of the lever arms is attached to the first housing and allows relative rotational movement of the lever about a lever axis. The lever may be moved from a pre-stage position to a final position. The lever engages the travel peg to move the second housing linearly in an insertion direction from a pre-stage position to a seated position relative to the first housing. The travel peg moves along a peg path when the second housing is moved from the pre-stage position to the seated position. The peg path is located between the lever axis and the handle.
Abstract:
An electrical connector includes a first housing. A second housing is movable relative to the first housing. The electrical connector includes a lever that is mounted on the first housing for relative rotational movement between a pre-stage position and a final position. The lever engages the second housing to move the second housing linearly between a pre-stage position and a seated position relative to the first housing. The electrical connector includes a lock that retains the lever in the final position relative to the first housing. The electrical connector also includes a connector position assurance. The connector position assurance is mounted on the first housing for relative movement between an initial position and an assurance position. When the lever is in the final position and the connector position assurance is in the assurance position, the connector position assurance engages the lever and prevents the lever from being moved away from the final position.
Abstract:
An electrical connector includes a first housing with a plurality of first terminal slots. Each first terminal slot includes a first terminal lock. Each first terminal slot also includes a first end stop. The first end stops are part of the first housing. Each first terminal slot is configured to retain a first electrical terminal between the first terminal lock and the first end stop. The electrical connector also includes a first terminal position assurance. The first terminal position assurance includes a first terminal position assurance body. A plurality of first lock retainers extend from the first terminal position assurance body. The first lock retainers prevent the first terminal locks from moving to a release position. The first terminal position assurance body is located in the same plane as the first end stops.
Abstract:
An electrical connector includes a first housing with two axle posts. A second housing is moveable relative to the first housing and includes two travel pegs. A lever includes two lever arms that are joined by a handle and each of the lever arms has an axle opening with one of the axle posts located therein. The lever is mounted on the first housing for relative rotational movement about a lever axis from a pre-stage position to a final position. The lever engages the travel pegs to move the second housing linearly in an insertion direction from a pre-stage position to a seated position relative to the first housing. Flanges extend from the axle posts generally perpendicular to the lever axis and opposite the insertion direction. The lever arms are located between the first housing and the respective flange when the lever is moved away from the pre-stage position.
Abstract:
A housing or other enclosure used to facilitate fluid cooling of a circuitry of a battery charger, such as but not limited to a battery charger of the type used to facilitate charging a high voltage vehicle battery with AC energy provided from a utility power grid. The housing may include a groove and seal arrangement operable to seal a fluid coolant chamber used to cool the circuitry from leaking fluid during use.
Abstract:
An electrical connector includes a connector housing having a first end and an opposed second end, a pair of release stops extending generally radially outward and adjacent to the first end, and a pair of deflection buttons extending longitudinally cantilevered from a pivot base having a lateral axis and having free ends extending toward the first end and located adjacent to and radially outward from respective ones of the release stops when in an unflexed state. The electrical connector also includes a latch arm extending longitudinally cantilevered from the pivot base toward the second end, with a free end of the latch arm including a latch lock configured to selectively engage a barb on a mating connector.