Abstract:
An apparatus for generating a large perforation in a target such as a wellbore casing. A recess in a housing has a closed end and an open end facing the target. A shaped liner in the recess has an apex facing the recess open end, and has a base end facing the closed end of the recess. The shaped liner defines an interior volume filled with explosive material. The explosive material is detonated and expands the liner against the recess wall and forms a perforating jet which moves toward the recess open end. If the recess open end is circular, the perforating jet exits the recess as an annular jet which impacts the target and cuts a plug section from the target. The penetrating power of the jet is confined to the annular cutting area instead of being focused into a conventional jet shape. Multiple shaped liners can be placed in the recess, and the shape of the perforating jet can be modified by the liner shape and recess dimensions.
Abstract:
An improved shaped charge for generating a jet. A lens shaped waveshaper is positioned within the explosive material of a shaped charge to modify the shape of the divergent detonation wave into a planar wave or a converging wave. The waveshaper is formed with a low sound speed material having a high index of refraction. By reshaping the detonation wave, the acceleration of the shaped charge liner is increased, and the penetration depth and hole size of the jet can be increased. The shaped charge operates more efficiently, thereby requiring less explosive material than a conventional shaped charge.
Abstract:
An implosion shaped charge device for jet perforating. In its overall concept, the implosion shaped charge perforator comprises a liner of implosive geometry, a primary explosive contiguous to the liner for providing implosion impulse to such and means for detonating the primary explosive. In a first embodiment the detonating means is an explosively actuated impact detonator. In a second embodiment the detonating means is a laser initiated explosive detonator. Both embodiments may be utilized in a perforating gun for perforating subsurface earth formations. In the operation of the embodiments the primary explosive is detonated with the resulting detonation wave approximately constantly accelerating the liner to radially converge to a small volume, from which a jet is propagated in the direction of the maximum pressure gradient.
Abstract:
An apparatus and method designed for generating and detecting reflected Terahertz waves using high-transition temperature (Tc) superconducting quantum devices (Josephson junctions) is described and the spectral response of reflected Terahertz radiation is mathematically analyzed to positively identify explosives strapped on a human or animal subject. This embodiment is well-suited for high traffic physical locations currently under surveillance such as security check points and also venues demanding significantly less obtrusive surveillance such as revolving entry doors, moving walkways, and entry gates of an airplane. The apparatus and method detects explosives through clothing without raising privacy concerns.
Abstract:
A shaped charge perforating unit includes a housing having a cavity formed therein. An explosive charge of high explosive material is retained within the cavity by a liner of non-explosive material. The explosive charge consists of quantities of two explosive materials having different detonation sensitivities.
Abstract:
A bullet perforating apparatus for perforating subsurface formations traversed by a borehole. The bullet perforating apparatus comprises a gun body with a plurality of bullet perforating gun assemblies. The individual gun assemblies further comprise a gun barrel, a cartridge tube with propellant, means for igniting propellant, a projectile, and a seal at the well bore end of the barrel. The barrel further comprises an outer member and a replaceable wear member securely retained within the outer member.
Abstract:
An apparatus designed for generating and detecting reflected Terahertz waves using a single pixel Complementary Metal Oxide Semiconductor (CMOS) or Charge Couple Device (CCD) camera is described. Optical alignment between the components is not necessary since the Terahertz waves can propagate from the source to a collimating lens using a metal wire that can be bent obviating the need to have a clear line of sight from the lens to the source or to the camera. The present invention is well-suited for high traffic physical locations currently under surveillance such as security check points and also venues demanding significantly less obtrusive surveillance such as revolving entry doors, moving walkways, and entry gates for airplanes.
Abstract:
An implosion shaped charge device for jet perforating. In its overall concept, the implosion shaped charge perforator comprises a liner of implosive geometry, a primary explosive contiguous to the liner for providing implosion impulse to such and means for detonating the primary explosive. In a first embodiment the detonating means is an explosively actuated impact detonator. In a second embodiment the detonating means is a laser initiated explosive detonator. Both embodiments may be utilized in a perforating gun for perforating subsurface earth formations. In the operation of the embodiments the primary explosive is detonated with the resulting detonation wave approximately constantly accelerating the liner to radially converge to a small volume, from which a jet is propagated in the direction of the maximum pressure gradient.
Abstract:
A shaped charge perforating unit includes a housing having a cavity formed therein. An explosive charge of high explosive material is retained within the cavity by a liner of non-explosive material. The explosive charge consists of quantities of two explosive materials having different detonation rates.
Abstract:
An apparatus designed for generating and detecting reflected Terahertz waves using a single pixel Complementary Metal Oxide Semiconductor (CMOS) or Charge Couple Device (CCD) camera is described. Optical alignment between the components is not necessary since the Terahertz waves can propagate from the source to a collimating lens using a metal wire that can be bent obviating the need to have a clear line of sight from the lens to the source or to the camera. The present invention is well-suited for high traffic physical locations currently under surveillance such as security check points and also venues demanding significantly less obtrusive surveillance such as revolving entry doors, moving walkways, and entry gates for airplanes.