Abstract:
A method of forming a non-optically detectable identifiable mark at an outer surface of an article formed from a solid state material, said method including the steps of forming a plurality of recesses within a predetermined region of a photoresist 5 applied to an outer surface of an article formed from a solid state material, wherein said plurality of recesses is formed by two-photon absorption lithography and wherein said one or more recesses extend at least partially through the photoresist and from an outer surface of the photoresist and towards said outer surface of the article 10 formed from a solid state material; and applying an etching process such that at least a portion of the outer surface of said article is exposed and etched so as to form a plurality of etched portions extending into said article from the outer surface of the article and corresponding to said plurality of recesses; wherein said predetermined region of said photoresist defines an identifiable mark to be applied to the outer 15 surface of said article; wherein said plurality of etched portions forms the nonoptically identifiable mark on the outer surface of said article; and wherein the maximum width of the etched portions of is less than 200 nm such that the identifiable mark is non-optically detectable in the visible light spectrum.
Abstract:
A process of forming an identification marking within article formed from an at least partially optically transparent material for identification and validation, said process including the steps of (i) forming an indicia with an at least partially optically transparent material by way of subsurface laser engraving (SSLE); and (ii) forming a plurality of defects within or adjacent indicia within said at least partially optically transparent material resultant of the step of forming the indicia and from localized heating and irregularities in said at least partially optically transparent material, wherein said plurality of defects forms said identification marking
Abstract:
A mold for imparting a marking including a requisite optical element has two and a half dimensions (2.5D) to the outer surface of an article formed from a ductile material. The mold includes a marking surface for imparting the mark to an outer surface of the article. That imparting is done by localized plastic deformation of the material from which the article is formed upon the mold and the article being urged against each other. The marking surface includes a micro-structure formed by an arrangement plural micro meter sized recessed or protruded entities. The entities are arranged in a predetermined arrangement in relation to each other, and the entities are arranged as a micro-structure having two and a half dimensions (2.5D). The entities are arranged in an inverse arrangement compared to the optical element, and to provide the recesses extending from the marking surface into the mold.
Abstract:
A method of forming a multi-level component includes the step of forming at least one arrangement of micro trenches in a predetermined arrangement in a mask material by a lithography process. Another step involves applying one or more etching processes to a surface of a component upon which the mask is applied. The micro trenches have either first or second different aspect ratios. In the applying step, the component is etched by an aspect ratio dependent etch (ARDE) process so as to form an arrangement of micro trenches and micro pillars between adjacent micro trenches. Another step involves removing the arrangement of micro pillars from the component by a removal process. There is also a multi-level component made according to the above method with a first portion at a first level and a further portion of a further level different from the first level.
Abstract:
An apparatus for coating at least a first plurality of articles each article thereof having at least a first surface to be coated is disclosed. The apparatus includes an emission source for directing emission elements towards the first surfaces of the plurality of articles, at least one support member for supporting the first plurality of articles, wherein support member supports the first plurality of articles such that the first surface is exposed to the path of emission from said emission source, and a drive assembly for moving the support member such that the first plurality of articles is moveable with respect to the path of emission from said emission source
Abstract:
A method of forming a non-optically detectable identifiable marking invisible to the naked eye is formed from plural recesses of multiple levels at an outer surface of an article formed from a solid-state material. The method includes forming plural recesses of multiple levels within a predetermined region of a photoresist applied to an outer surface of an article formed from a solid-state material. The plural recesses are formed by grayscale lithography and the recesses extend at least partially through the photoresist and towards the outer surface of the article formed from a solid-state material. The method also includes applying an etching process such that at least a portion of the outer surface of said article is exposed and etched to form plural etched portions extending into the article from its outer surface and corresponding to plural recesses; wherein said predetermined region of said photoresist defines an identifiable marking to be applied to the outer surface of said article; wherein said plurality of etched portions forms the non-optically identifiable marking on the outer surface of said article.
Abstract:
A process of forming a three-dimensional micro component includes the step of forming a three-dimensional (3D) geometry contour within a photoresist material using two-photon absorption polymerization. The three-dimensional geometry contour forms a cross-linked polymeric contour defining an outer surface portion of a micro component upon baking of the three-dimensional geometry portion formed in the photoresist. Another step involves applying a UV (ultraviolet) polymerization process so as to cross-link polymeric material of the photoresist adjacent the three-dimensional geometry contour.
Abstract:
A process of providing an antibacterial coating to the surface of an article including the steps of applying a layer of an antibacterial precursor layer to the surface of an article to which an antibacterial coating is to be applied, wherein said antibacterial precursor layer is a precursor from which the coating is to be formed; and directing a neutral molecular hydrogen flux from a neutral molecular hydrogen flux emission source towards the surface of the article. Upon impact of neutral hydrogen molecules on molecules at or on the surface of an article, the bonds of the antibacterial precursor layer are selectively ruptured, and wherein the selectively ruptured bonds cross-link with themselves or with other chemical moieties at said surface or a combination thereof, resulting an antibacterial coating being formed on the surface of the article.