Abstract:
Provided are a varistor forming paste, a cured product thereof, and a varistor, that can increase the degree of freedom in designing an electronic device, and can exhibit appropriate varistor characteristics. The varistor forming paste contains an epoxy resin (A), a curing agent (B), and a carbon aerogel (C).
Abstract:
An underfill composition for encapsulating a bond line and a method of using the underfill composition are described. Advantageously, the disclosed underfill composition in an uncured state has a fluidity value of less than about ten minutes over about a two centimeter distance at a temperature of about 90 degrees C. and at a bond line thickness of about 50 microns or less and still have a bulk thermal conductivity that is greater than about 0.8 W/mK in the cured state.
Abstract:
Provided are a varistor forming paste, a cured product thereof, and a varistor, that can increase the degree of freedom in designing an electronic device, and can exhibit appropriate varistor characteristics. The varistor forming paste contains an epoxy resin (A), a curing agent (B), and a carbon aerogel (C).
Abstract:
A method of predicting viscosity behavior of a thermosetting resin is provided that is capable of predicting viscosity behavior of a thermosetting resin and void generation in the underfill is suppressed while good solder connection is obtained. The method includes: measuring a reaction rate and measuring viscosity behavior to measure a calorimetry peak and viscosity behavior of the thermosetting resin with three or more rates of temperature increase respectively; fitting a reaction rate to fit measurement data with each rate of temperature increase obtained by the measuring a reaction rate to a Kamal model formula to obtain fitting curves; fitting viscosity behavior to fit parameters in the Kamal model formula and the measurement data for each rate of temperature increase obtained by the measuring viscosity behavior to a Castro-Macosko model formula to obtain fitting curves; and calculating virtual viscosity behavior to calculate virtual viscosity behavior of the thermosetting resin at the arbitrary rate of temperature increase by simulation based on each fitting curve for each rate of temperature increase obtained by the fitting viscosity behavior.
Abstract:
A method of predicting viscosity behavior of a thermosetting resin is provided that is capable of predicting viscosity behavior of a thermosetting resin and void generation in the underfill is suppressed while good solder connection is obtained. The method includes: measuring a reaction rate and measuring viscosity behavior to measure a calorimetry peak and viscosity behavior of the thermosetting resin with three or more rates of temperature increase respectively; fitting a reaction rate to fit measurement data with each rate of temperature increase obtained by the measuring a reaction rate to a Kamal model formula to obtain fitting curves; fitting viscosity behavior to fit parameters in the Kamal model formula and the measurement data for each rate of temperature increase obtained by the measuring viscosity behavior to a Castro-Macosko model formula to obtain fitting curves; and calculating virtual viscosity behavior to calculate virtual viscosity behavior of the thermosetting resin at the arbitrary rate of temperature increase by simulation based on each fitting curve for each rate of temperature increase obtained by the fitting viscosity behavior.
Abstract:
A resin composition which includes (A) an epoxy resin, (B) a curing agent, and (C) carbon nanotubes, wherein the carbon nanotubes contain therein semiconducting single-walled carbon nanotubes in an amount of 70% by weight or more. A cured product of a paste made from the resin composition can be used to form a varistor element.