PORTABLE ELECTRONIC SYSTEM FOR THE ANALYSIS OF TIME-VARIABLE GASEOUS FLOWS

    公开(公告)号:US20170168030A1

    公开(公告)日:2017-06-15

    申请号:US15323765

    申请日:2015-07-02

    Abstract: A portable system 1 for analyzing gaseous flows that vary over time is described, the system comprising a sampling chamber 18, a gas sampling module 7, an ion filtering module 8 and an ion detecting module 9. The sampling chamber 18 is suitable to be kept at a controlled sampling pressure Pc, and is configured to receive at least one gaseous flow F having a gaseous composition to be analyzed that is variable over time. The gas sampling module 7, arranged in fluidic communication with the sampling chamber 18, is configured to adjust an input gaseous flow Fi of gas particles from the sampling chamber 18, and an output gaseous flow Fo from the sampling module 7, so as to reproduce inside the sampling module 7 a gaseous composition representative of the gaseous composition to be analyzed. The gas sampling module 7 is further configured to ionize said gas particles and to emit the produced ions, so as to generate an ion flow I having an ion composition representative of the gaseous composition to be analyzed. The sampling module 7 is also suitable to maintain inside it a controlled ionization pressure Pi, and it is also configured in such a way that the input gaseous flow Fi comprises a plurality of micro-flows at a molecular or predominantly molecular regime, at the sampling pressure Pc, and the output gaseous flow Fo is a flow at a molecular or predominantly molecular regime, at the ionization pressure Pi. The ion filtering module 8 is operatively connected to the sampling module 7 to receive the ion flow I, and is configured to controllably select at least one type of ion present in the ion flow I and to generate a corresponding at least one homogeneous ion beam I′, having an intensity representative of the concentration of the corresponding gas particle in the gaseous composition to be analyzed. The ion detecting module 9 is operatively connected to the ion filtering module 8 to receive the at least one ion beam I′, and is configured to measure the intensity of the at least one ion beam I′ and to generate a corresponding electric signal S representative of the concentration of the corresponding gas particle in the gaseous composition to be analyzed.

    Device for controlling a gaseous flow and systems and methods employing the device

    公开(公告)号:US20170130870A1

    公开(公告)日:2017-05-11

    申请号:US15322791

    申请日:2015-07-02

    Abstract: Disclosed are devices, systems and methods for gas sampling, for controlling and measuring a gaseous flow, and for controlling a pressure gradient. An exemplary device 1 for controlling a gaseous flow comprises a gaseous flow adjusting interface 2, configured to inhibit or allow a flow of gas through the device 1 in a controlled manner, and control means 3, 4 of the adjusting interface. The adjusting interface 2 comprises a plurality of nano-holes 20. Each of the nano-holes has sub-micrometric dimensions and is suitable to be opened or closed in a controlled manner. The control means 3,4, in turn, comprise actuating means 3, suitable to open or close these nano-holes, and electronic processing means 4, configured to activate the actuation means to open or close individually or collectively the nano-holes 20 in a controlled manner.

    PORTABLE ELECTRONIC DEVICE FOR THE ANALYSIS OF A GASEOUS COMPOSITION

    公开(公告)号:US20170133212A1

    公开(公告)日:2017-05-11

    申请号:US15323279

    申请日:2015-07-02

    Abstract: An electronic device 1 for analyzing a gas composition, which is present in an environment A at an environment pressure Pa, is described. The device 1 is portable and comprises a gas sampling module 7, an ion filtering module 8 and an ion detecting module 9. The sampling module 7 is configured to adjust an input gaseous flow Fi of gaseous particles from the environment A and an output gaseous flow Fo so as to reproduce inside the sampling module 7 a gas composition representative of the gas composition to be analyzed. In addition, the sampling module 7 is configured to ionize said gaseous particles and to emit the ions produced, so as to generate an ion flow I having an ion composition representative of the gas composition to be analyzed. The ion filtering module 8 is operatively connected to the sampling module 7 to receive the ion flow I, and is configured to controllably select at least one type of ions present in the ion flow I and to generate a corresponding at least one homogeneous ion beam I′, having an intensity representative of the concentration of the corresponding gas particle in the gaseous composition to be analyzed. The ion detecting module 9 is operatively connected to the ion filtering module 8 to receive the at least one ion beam I′, and is configured to measure the intensity of such least one ion beam I′ and to generate a corresponding electric signal S representative of the concentration of the corresponding gas particle in the gaseous composition to be analyzed.The device 1 further comprises pumping means 95, configured to extract gas from the device 1, so as to control an ionization pressure Pi that is present inside the sampling module 7. The sampling module 7 is configured in such a way that the input gaseous flow Fi comprises a plurality of micro-flows at a molecular or predominantly molecular regime, at the environment pressure Pa, and the output gaseous flow Fo is a flow at a molecular or predominantly molecular regime, at the ionization pressure Pi.

Patent Agency Ranking