Abstract:
Techniques are disclosed related to calibrating and operating a multiple input multiple output (MIMO) radio system. In some embodiments, a dual mode calibration may be employed to calibrate a remote transmitter (RT). During a first, Sparse Full System Calibration (SFSC) mode, the RT may be physically connected to the MIMO radio system. In some embodiments, first and second equalizers may be derived for each of the RT and a local transmitter (LT), respectively. During a subsequent, Real-time Calibration (RTC) mode, the RT may be located remotely from the MIMO radio system, and the RT may be configured to communicate with the MIMO radio system over the air via an antenna. In the RTC mode, third equalizers may be derived for the LT. The RT may then be calibrated based on an equalizer that is derived from each of the first, second, and third equalizers. As one non-limiting example, the techniques described herein may enable real-time calibration for the RT even while the RT is located remotely from the MIMO radio system. In different embodiments, the calibration may be achieved by deriving either fractionally spaced frequency domain equalizers, or time domain equalizers.
Abstract:
Techniques are disclosed relating to use of digital predistortion in the context of full-duplex radio. In some embodiments, an apparatus includes one or more antennas and is configured to simultaneously transmit and receive wireless signals via at least partially overlapping frequency resources using the one or more antennas. In some embodiments, the apparatus includes receive chain circuitry that is configured to process both wireless signals transmitted by the apparatus via the one or more antennas and over-the-air wireless signals from one or more other computing devices. In some embodiments, the apparatus includes one or more processing elements configured to determine one or more digital predistortion parameters based on the wireless signals transmitted by the apparatus via the one or more antennas and processed by the receive chain circuitry and apply predistortion to transmitted wireless signals based on the one or more digital predistortion parameters.
Abstract:
Various embodiments of methods and associated devices for increasing throughput in a programmable hardware element using interleaved data converters are disclosed. A device comprising a programmable hardware element may be configured to comprise a plurality N of processing portions. The device may receive an input signal, and sample the signal in an interleaved fashion, on a per sample basis, at an effective rate K, to produce N parallel data streams. The N parallel data streams may be processed in parallel by the plurality N of processing portions. Outputs of the plurality N of processing portions may be combined to produce output data. The effective rate K and/or the number N of parallel data streams may be specified by user input. Alternatively, these values may be determined automatically. For example, the effective rate K may be determined automatically based on a bandwidth of the input signal.
Abstract:
Techniques are disclosed relating to channel quality reporting for full-duplex (FD) wireless communications. In some embodiments an apparatus (e.g., a mobile device) is configured to receive a reference signal in a wireless communication and determine one or more signal quality indicators for FD communications based on a measured SINR of the reference signal and one or more self-interference cancelation levels. The apparatus may determine the one or more self-interference cancelation levels based on the transmit power of signals transmitted by the apparatus and residual power after SIC. The SIC levels may include both analog and digital SIC levels, which may be separately determined. One or more modulation and coding schemes may be determined based on the effective SINR. In some embodiments, multiple effective SINRs are determined for multiple different transmission modulation orders used by the apparatus.
Abstract:
Techniques are disclosed relating to implementation of LDPC encoding circuitry on a single integrated circuit (IC). In some embodiments, circuitry on a single IC includes message circuitry configured to receive or generate a message to be encoded, encode circuitry configured to perform low density parity check (LDPC) encoding on the message, noise circuitry configured to apply noise to the encoded message, and decode circuitry configured to perform LDPC decoding of the message. In some embodiments, the disclosed techniques may reduce production costs (e.g., by reducing overall chip area), facilitate LDPC testing, and/or provide multiple different functions relating to message transmission on a single chip.
Abstract:
A flexible real-time scheduler for a wireless communication node, enabling the node to communicate with a remote node using dynamically variable frame structure. The scheduler continuously receives map information defining the frame structure of frames in a frame sequence. Each frame includes a plurality of slots (e.g., time slots or frequency slots). The map information specifies for each slot of each frame whether the slot is to be a transmit slot or a receive slot. The scheduler drives a transmitter to transmit during the slots assigned for transmission, and drives a receiver to receive during the slots assigned for reception. (The number of slots per frame and the size of each slot are also configurable.)
Abstract:
Techniques are disclosed related to calibrating and operating a multiple input multiple output (MIMO) radio system. In some embodiments, a dual mode calibration may be employed to calibrate a remote transmitter (RT). During a first, Sparse Full System Calibration (SFSC) mode, the RT may be physically connected to the MIMO radio system. In some embodiments, first and second equalizers may be derived for each of the RT and a local transmitter (LT), respectively. During a subsequent, Real-time Calibration (RTC) mode, the RT may be located remotely from the MIMO radio system, and the RT may be configured to communicate with the MIMO radio system over the air via an antenna. In the RTC mode, third equalizers may be derived for the LT. The RT may then be calibrated based on an equalizer that is derived from each of the first, second, and third equalizers. As one non-limiting example, the techniques described herein may enable real-time calibration for the RT even while the RT is located remotely from the MIMO radio system. In different embodiments, the calibration may be achieved by deriving either fractionally spaced frequency domain equalizers, or time domain equalizers.
Abstract:
Techniques are disclosed related to calibrating and operating a multiple input multiple output (MIMO) radio system. Some embodiments comprise a method wherein a single calibration signal is used to calibrate a MIMO radio system by performing each of time synchronization, phase synchronization, and frequency response correction for multiple receivers. In different embodiments, the calibration may be achieved by deriving either a fractionally spaced frequency domain equalizer, or a time domain equalizer.
Abstract:
Techniques are disclosed relating to use of digital predistortion in the context of full-duplex radio. In some embodiments, an apparatus includes one or more antennas and is configured to simultaneously transmit and receive wireless signals via at least partially overlapping frequency resources using the one or more antennas. In some embodiments, the apparatus includes receive chain circuitry that is configured to process both wireless signals transmitted by the apparatus via the one or more antennas and over-the-air wireless signals from one or more other computing devices. In some embodiments, the apparatus includes one or more processing elements configured to determine one or more digital predistortion parameters based on the wireless signals transmitted by the apparatus via the one or more antennas and processed by the receive chain circuitry and apply predistortion to transmitted wireless signals based on the one or more digital predistortion parameters.
Abstract:
Techniques are disclosed relating to channel quality reporting for full-duplex (FD) wireless communications. In some embodiments an apparatus (e.g., a mobile device) is configured to receive a reference signal in a wireless communication and determine an effective signal to interference plus noise ratio (SINR) for FD communications based on a measured SINR of the reference signal and one or more self-interference cancelation levels. The apparatus may determine the one or more self-interference cancelation levels based on the transmit power of signals transmitted by the apparatus and residual power after SIC. The SIC levels may include both analog and digital SIC levels, which may be separately determined. One or more modulation and coding schemes may be determined based on the effective SINR. In some embodiments, multiple effective SINRs are determined for multiple different transmission modulation orders used by the apparatus.