Abstract:
The present invention relates to a tin whisker mitigation material using thin film metallic glass underlayer, which is a thin film metallic glass (TFMG) formed between a metal substrate and a tin layer. Particularly, the TFMG can be a Zr46Ti26Ni28 underlayer or a Zr51.7Cu32.3Al9Ni underlayer, capable of blocking off the interaction occurring in the interface of a copper layer (the metal substrate) and the tin layer, so as to carry out the inhibition of tin whisker growth. Moreover, a variety of experiment data are proposed for proving that the TFMG of the Zr46Ti26Ni28 or the Zr51.7Cu32.3Al9Ni can indeed be used to replace the conventionally used thick tin layer for being the underlayer between the copper layer (the metal substrate) and the tin layer, and then effectively inhibit the interaction occurring in the Cu/Sn interface and the growth of tin whisker by low manufacturing cost way.
Abstract:
The present invention relates to a hydrophilic metal thin film, which is formed by stacking a plurality of columnar structures. A plurality of tetrahedral structures is on the surface of the hydrophilic metal film, which is formed on the top of the columnar structures. The width of the tetrahedral structures is 15 nm to 120 nm. The hydrophilic metal thin film comprises: 35 to 95 at % of iron, 5 to 20 at % of chromium. The above-mentioned hydrophilic metal thin film is formed by magnetron sputtering method under the working pressure of argon gas ranging from 6 mTorr to 13 mTorr, and the sputtering time exceeds 20 minutes.
Abstract:
A tattoo needle structure is provided. A tattoo needle has a plurality of needle tips, an ink holding space is formed by the arrangement of the needle tips, and a multi-component alloy film is deposited on each needle tip of the tattoo needle by sputtering technology, so that when the tattoo needle is dipped into the tattoo ink, the tattoo ink does not stick to the surface of the multi-component alloy film by the hydrophobic property of the multi-component alloy film, and the tattoo ink is contained in the ink holding space by the cohesive property of the tattoo ink. Thus, when the tattoo needle is dipped into the tattoo ink and the tattoo process is performed, the dyeing area of the skin with the tattoo ink is the cross-sectional area of the ink holding space, thereby achieving the technical effect of improving the contouring resolution of a tattoo.
Abstract:
An ultraviolet sensor comprises a glass substrate, a semiconductor structure, an electrode layer and a thin film metallic glass. The semiconductor structure comprises a semiconductor seed layer formed on the glass substrate and a plurality of semiconductor nanostructures formed on the semiconductor seed layer. The electrode layer is formed between the semiconductor seed layer and the plurality of semiconductor nanostructures. The thin film metallic glass is in contact with the semiconductor structure, wherein an interface between the thin film metallic glass and the semiconductor structure forms a Schottky barrier junction to inhibit dark current and increase signal-to-noise ratio.
Abstract:
A thin film metallic glass coated needle includes a needle body, a needle head and a thin film metallic glass in amorphous structure and formed on a surface of the needle head and a surface of the needle body to reduce a surface energy and coefficient of friction. The thin film metallic glass is a titanium based comprising 35-45 at % titanium, 5-15 at % zirconium, 32-42 at % copper, 1-11 at % niobium and 2-12 at % cobalt.
Abstract:
The present invention relates to a tin whisker mitigation material using thin film metallic glass underlayer, which is a thin film metallic glass (TFMG) formed between a metal substrate and a tin layer. Particularly, the TFMG can be a Zr46Ti26Ni28 underlayer or a Zr51.7Cu32.3Al9Ni underlayer, capable of blocking off the interaction occurring in the interface of a copper layer (the metal substrate) and the tin layer, so as to carry out the inhibition of tin whisker growth. Moreover, a variety of experiment data are proposed for proving that the TFMG of the Zr46Ti26Ni28 or the Zr51.7Cu32.3Al9Ni can indeed be used to replace the conventionally used thick tin layer for being the underlayer between the copper layer (the metal substrate) and the tin layer, and then effectively inhibit the interaction occurring in the Cu/Sn interface and the growth of tin whisker by low manufacturing cost way.
Abstract:
The present invention relates to a resistive random access memory using amorphous metallic glass oxide as a storage medium, comprising a substrate, an insulation layer, a first electrode layer, a resistive memory layer, and a second electrode layer. In the present invention, an amorphous metallic glass oxide layer is mainly used as the resistive memory layer of the resistive random access memory. Therefore, the resistive random access memory with storage medium of amorphous metallic glass oxide thin film having advantages of low operation voltage, low power consumption, and high set/reset resistance ratio are provided without using any thermal annealing processes or forming processes.