Abstract:
A Raman detecting chip for thin layer chromatography and a method for separating and detecting an analyte are provided. The Raman detecting chip for thin layer chromatography includes a silicon substrate. The silicon substrate includes a flat portion and a plurality of silicon nanowires disposed on the flat portion, wherein each silicon nanowire has a top surface and a sidewall. A metal layer covers the top surface and at least a part of the sidewall. The silicon nanowire has a length from 5 μm to 15 μm.
Abstract:
A Raman detecting chip for thin layer chromatography and a method for separating and detecting an analyte are provided. The Raman detecting chip for thin layer chromatography includes a silicon substrate. The silicon substrate includes a first portion, a second portion and a plurality of silicon nanowires disposed on the first portion, wherein each silicon nanowire has a top surface and a sidewall. A metal layer covers the top surface and at least a part of the sidewall of the silicon nanowire, wherein the silicon nanowire has a length L from 5 μm to 15 μm. The ratio between the length L1 of the side wall covered by the metal layer and the length L of the silicon nanowire is from 0.2 to 0.8.
Abstract:
A metamaterial is suitable for receiving a detecting wave. The detecting wave interacts with the metamaterial. The metamaterial includes a substrate and at least one unit cell placed on the substrate. The size of the unit cell is at least less than ⅓ of the wavelength of the detecting wave. A biological and chemical detecting system using the metamaterial is also disclosed.
Abstract:
A transparent conducting electrode using a metamaterial high pass filter includes a substrate and a metal layer. The metal layer is disposed on a surface of the substrate and has a plurality of periodic patterns, wherein the plurality of periodic patterns are interconnected to form a metamaterial structure with subwavelength meshes, and a size of open area of the periodic pattern is smaller than the average wavelength of visible light. The abovementioned transparent conducting electrode using the metamaterial high pass filter has advantages of higher transmittance, conductivity and flexibility and lower process temperature.