Abstract:
A solidly mounted resonator (SMR)-based magnetoelectric (ME) antenna comprises a substrate, a Bragg reflector disposed on the substrate, a magnetostrictive/piezoelectric ME composite element disposed on the Bragg reflector, a first electrically conductive contact and a second electrically conductive contact. The first contact is disposed between the Bragg reflector and the magnetostrictive/piezoelectric ME composite element and electrically coupled to a bottom surface of the magnetostrictive/piezoelectric ME composite element. The second contact is disposed on top of the magnetostrictive/piezoelectric ME composite element and electrically coupled to the top of the magnetostrictive/piezoelectric ME composite element. The magnetostrictive/piezoelectric ME composite element comprises a magnetorestrictive multilayer deposited on a piezoelectric layer. The magnetorestrictive multilayer produces an in-plane uniaxial magnetic anisotropy (UMA). The UMA is a twofold UMA that exhibits a symmetric radiation pattern.
Abstract:
A sputter growth method for a crystalline ordered topological insulator (TI) material on an amorphous substrate, which is possible to use at a CMOS-compatible temperature. The process can be integrated into CMOS fabrication processes for Spin Orbit Torque (SOT) devices. The resulting material can include a thin film crystalline ordered TI layer, sputter deposited on an amorphous substrate, and an adjacent ferromagnetic (FM) layer in which spin-orbit torque is provided by the TI layer, for example to cause switching in magnetic states in a magnetic memory device.
Abstract:
Described herein is a sensor comprising a doped silicon layer, a graphene layer on the doped silicon layer, a molecularly imprinted polymer (MIP) layer on the graphene layer, and electrodes in operative arrangement with the MIP layer and configured to provide a signal indicative of resistance. The MIP layer is derived from a MIP monomer and functional monomer. Also described herein is a detector comprising a sensor described herein as well as methods of making and using the sensors and detectors, e.g., to detect an analyte, such as a virus.
Abstract:
Provided herein are compositions comprising wood and an inorganic magnetic material which is uniformly distributed throughout the wood, as well as methods of providing electromagnetic interference and/or shielding using the compositions (e.g., for use in construction, defense information security, and aerospace applications). Also provided herein is a process for preparing the compositions.
Abstract:
A solidly mounted resonator (SMR)-based magnetoelectric (ME) antenna comprises a substrate, a Bragg reflector disposed on the substrate, a magnetostrictive/piezoelectric ME composite element disposed on the Bragg reflector, a first electrically conductive contact and a second electrically conductive contact. The first contact is disposed between the Bragg reflector and the magnetostrictive/piezoelectric ME composite element and electrically coupled to a bottom surface of the magnetostrictive/piezoelectric ME composite element. The second contact is disposed on top of the magnetostrictive/piezoelectric ME composite element and electrically coupled to the top of the magnetostrictive/piezoelectric ME composite element. The magnetostrictive/piezoelectric ME composite element comprises a magnetorestrictive multilayer deposited on a piezoelectric layer. The magnetorestrictive multilayer produces an in-plane uniaxial magnetic anisotropy (UMA). The UMA is a twofold UMA that exhibits a symmetric radiation pattern.
Abstract:
A nonreciprocal tunable bandpass filter includes a transducer comprising parallel coupled conductive lines; and a ferrite body having at least two opposing parallel edges, the ferrite body disposed over the microstrip transducer such that the parallel edges of the ferrite layer are tilted at a non-zero angle Θ with respect to the parallel coupled microstrip lines of the microstrip transducer.
Abstract:
A thin film heterostructure of a topological insulator (TI) with a normal metal (NM) is used as a highly energy efficient and low power dissipation spin Hall Material (SHM). The TI material is sputter deposited onto a substrate and cooled in high vacuum, and an NM material is sputter deposited onto the TI film. The structure and method is compatible with complementary metal oxide (CMOS) processes, and with growth of large-area TI films for wafer-level device fabrication.
Abstract:
A sputter growth method for a crystalline ordered topological insulator (TI) material on an amorphous substrate, which is possible to use at a CMOS-compatible temperature. The process can be integrated into CMOS fabrication processes for Spin Orbit Torque (SOT) devices. The resulting material can include a thin film crystalline ordered TI layer, sputter deposited on an amorphous substrate, and an adjacent ferromagnetic (FM) layer in which spin-orbit torque is provided by the TI layer, for example to cause switching in magnetic states in a magnetic memory device.
Abstract:
Devices and methods for the detection of an analyte, e.g, from exhaled breath or air are provided. A sensor includes a polymer layer molecularly imprinted for the analyte, a metal layer, and an electrocatalytic layer disposed between the polymer layer and the metal layer. The electrocatalytic layer is functionalized with at least one chemical compound that provides for noncovalent interaction with the analyte. The sensor further includes electrodes in operative arrangement with the polymer layer and configured to provide a signal indicative of a resistance. A change in resistance of the device can indicate the presence of the analyte in the sample.
Abstract:
A thin film heterostructure of a topological insulator (TI) with a normal metal (NM) is used as a highly energy efficient and low power dissipation spin Hall Material (SHM). The TI material is sputter deposited onto a substrate and cooled in high vacuum, and an NM material is sputter deposited onto the TI film. The structure and method is compatible with complementary metal oxide (CMOS) processes, and with growth of large-area TI films for wafer-level device fabrication.