Abstract:
An illumination apparatus comprising, a light source that emits a laser beam, a lens array on which the laser beam is illuminated, a plurality of element lenses having a diameter greater than or equal to the laser beam are arranged in the lens array, the lens array being rotatable around an optical axis of the laser beam, wherein the two lens arrays are arrayed in an optical axis direction of the laser beam, andthe element lenses in each lens array are arranged such that a boundary between the element lenses adjacent to each other radiates from a rotation center of the lens array and a direction in which the element lens of one of the lens arrays traverses the optical axis of the laser beam is orthogonal to a direction in which the element lens of the other lens array traverses the optical axis of the laser beam.
Abstract:
In a focal position adjusting method for an inspection apparatus, the inspection apparatus includes an illumination optical system and an imaging optical system configured to perform a defect inspection of a pattern formed in a sample using an image imaged on a first sensor. The focal position adjusting method includes illuminating the light from the first light source on the sample after transmitting the light through a first slit disposed in the illumination optical system. The light from the first light source is condensed into a second sensor disposed in the imaging optical system. A light intensity distribution of a pupil of the illumination optical system is observed. The focal position of the illumination optical system is adjusted by obtaining each light quantity of the front focus and the rear focus of the image of the first slit projected on the sample based on the light intensity distribution.
Abstract:
A displacement measuring apparatus includes an illumination system to obliquely irradiate the target object surface with beams, a sensor to receive a reflected light from the target object surface, an optical system to diverge the reflected light in a Fourier plane with respect to the target object surface, a camera to image a diverged beam in the Fourier plane, a gravity center shift amount calculation circuitry to calculate a gravity center shift amount of the reflected light in the light receiving surface of the sensor, based on a light quantity distribution of the beam imaged by the camera, and a measurement circuitry to measure a heightwise displacement of the target object surface by an optical lever method, using information on a corrected gravity center position obtained by correcting the gravity center position of the reflected light received by the sensor by using the gravity center shift amount.
Abstract:
A luminous flux branching element includes a transparent base member arranged diagonally to an optical axis and having an incidence plane and an emission plane parallel to each other. Incident light from the incidence plane is split into a main luminous flux emitted from an emission position on the emission plane and a branched luminous flux emitted from a branch position apart from the emission position and having a smaller light quantity than of the main luminous flux. A reflecting member is arranged on the incidence plane to cause the incidence plane to reflect reflected light from the emission plane. A non-coat region in which antireflection-treatment is not performed is formed in a region of the emission plane where the incident light from the incidence plane is reached, and antireflection-treatment is performed in the emission plane excluding the non-coat region and the incidence plane.