Abstract:
A light emitting assembly includes a first light emitting component, a second light emitting component, and a third light emitting component. The components are arranged such that a first light, a second light and a third light mix to form a mixed light. The assembly includes a control device, which has a first control channel and a second control channel operating the three components and configured such that in a first operating range the first component is driven via the first channel and the second and third components are driven jointly via the second channel. In the first operating range the mixed light is continuously adjustable from the first color to a fourth color, and in a second operating range the second component is driven via the second channel and the first and third components are driven jointly via the first channel.
Abstract:
In various embodiments, a light-emitting diode arrangement is provided. The light-emitting diode arrangement includes a first substrate with a first light-emitting diode which is arranged on the first substrate such that light emitted by it radiates in a main emission direction of the light-emitting diode arrangement, and a second substrate with a second light-emitting diode which is arranged on the second substrate such that light emitted by it radiates in the main emission direction of the light-emitting diode arrangement. The second substrate is arranged above the first substrate, such that the second substrate at least partly covers the first substrate.
Abstract:
Various embodiments may relate to a lighting module which is equipped with several semiconductor light sources, in particular LED-chips and includes a metallic carrier plate. Several metallic carrier substrates are arranged on the carrier plate and are electrically insulated therefrom. At least one semiconductor light source is arranged on the carrier substrates and the carrier substrates are electrically connected in series.
Abstract:
An LED module includes a carrier plate having an arrangement face and a wall on the upper side of the plate, the wall running peripherally around the arrangement face and being raised upwards with respect to said arrangement face; an LED arranged on the face; a contact element, to which the LED is connected; and an at least partially transparent potted body covering the arrangement face and the LED towards the top and laterally adjoins an inner face of the wall. The wall is formed monolithically with the remaining carrier plate and is interrupted over its periphery, and the potted body does not adjoin the inner wall face of the wall. The contact element extends away from the arrangement face along the upper side of the carrier plate in the interruption region so that electrical contact can be made with the LED via the contact element from outside the body.
Abstract:
An LED module includes a carrier plate having an arrangement face and a wall on the upper side of the plate, the wall running peripherally around the arrangement face and being raised upwards with respect to said arrangement face; an LED arranged on the face; a contact element, to which the LED is connected; and an at least partially transparent potted body covering the arrangement face and the LED towards the top and laterally adjoins an inner face of the wall. The wall is formed monolithically with the remaining carrier plate and is interrupted over its periphery, and the potted body does not adjoin the inner wall face of the wall. The contact element extends away from the arrangement face along the upper side of the carrier plate in the interruption region so that electrical contact can be made with the LED via the contact element from outside the body.
Abstract:
In various embodiments, a light emitting diode module may include a carrier plate, at least one light emitting diode, and at least one sensor configured to register light emitted by the light emitting diode. The light emitting diode is attached to a light emitting diode installation side of the carrier plate. The sensor is installed countersunk through a hole of the carrier plate in relation to the light emitting diode installation side thereof.
Abstract:
A light emitting assembly includes a first light emitting component, a second light emitting component, and a third light emitting component. The components are arranged such that a first light, a second light and a third light mix to form a mixed light. The assembly includes a control device, which has a first control channel and a second control channel operating the three components and configured such that in a first operating range the first component is driven via the first channel and the second and third components are driven jointly via the second channel. In the first operating range the mixed light is continuously adjustable from the first color to a fourth color, and in a second operating range the second component is driven via the second channel and the first and third components are driven jointly via the first channel.
Abstract:
In various embodiments, a light emitting diode module may include a carrier plate, at least one light emitting diode, and at least one sensor configured to register light emitted by the light emitting diode. The light emitting diode is attached to a light emitting diode installation side of the carrier plate. The sensor is installed countersunk through a hole of the carrier plate in relation to the light emitting diode installation side thereof.
Abstract:
Various embodiments may relate to a lighting module which is equipped with several semiconductor light sources, in particular LED-chips and includes a metallic carrier plate. Several metallic carrier substrates are arranged on the carrier plate and are electrically insulated therefrom. At least one semiconductor light source is arranged on the carrier substrates and the carrier substrates are electrically connected in series.