Abstract:
A mass spectrometry-based method of directly online detecting fuel cell reaction products includes passing a reactant sample (16) through a fuel cell (12) to form reaction products that exit the fuel cell (12) in an output stream (26). The method also includes adding a derivatizing reagent (32) to the output stream (28) to form a derivatized output stream (34), wherein the derivatizing reagent (32) reacts with a potential reaction product to thereby form a derivatized reaction product if the potential reaction product is present. The method further includes directing a charged solvent (44) toward the derivatized output stream (34) to thereby ionize the derivatized output stream (34) and directing the ionized, derivatized output stream (54) to a mass spectrometer (14), the mass spectrometer (14) being configured to detect the derivatized reaction product.
Abstract:
A mass spectrometry-based method of directly online detecting fuel cell reaction products includes passing a reactant sample (16) through a fuel cell (12) to form reaction products that exit the fuel cell (12) in an output stream (26). The method also includes adding a derivatizing reagent (32) to the output stream (28) to form a derivatized output stream (34), wherein the derivatizing reagent (32) reacts with a potential reaction product to thereby form a derivatized reaction product if the potential reaction product is present. The method further includes directing a charged solvent (44) toward the derivatized output stream (34) to thereby ionize the derivatized output stream (34) and directing the ionized, derivatized output stream (54) to a mass spectrometer (14), the mass spectrometer (14) being configured to detect the derivatized reaction product.
Abstract:
A mass spectrometry-based method for analyzing an acidic organic target compound includes directing a charged solvent (44) toward a pre-acidified sample (12) comprising the target compound, to thereby ionize the pre-acidified sample (12). The method further includes directing the ionized pre-acidified sample (54) to a mass spectrometer (18), the mass spectrometer (18) being configured to identify and quantify the target compound.
Abstract:
A mass spectrometry-based method for analyzing an acidic organic target compound includes directing a charged solvent (44) toward a pre-acidified sample (12) comprising the target compound, to thereby ionize the pre-acidified sample (12). The method further includes directing the ionized pre-acidified sample (54) to a mass spectrometer (18), the mass spectrometer (18) being configured to identify and quantify the target compound.