Abstract:
A semiconductor integrated circuit that reduces a loss in an electrical signal and a method for manufacturing the semiconductor integrated circuit are provided. The semiconductor integrated circuit comprises a first region on which an optical circuit is to be formed and a second region on which an electrical signal wiring is to be formed. The first region comprises an Si substrate (502), a BOX layer (504) formed on the Si substrate (502), a first SOI layer (506) formed as an optical circuit on the BOX layer (504), and a first SiO2 layer (508) formed on the first SOI layer (506). The second region comprises the Si substrate (502), the BOX layer (504), a second SiO2 layer (508) formed on the BOX layer (504), and an electrical signal wiring (510) formed on the second SiO2 layer (508).
Abstract:
A semiconductor integrated circuit that reduces a loss in an electrical signal and a method for manufacturing the semiconductor integrated circuit are provided. The semiconductor integrated circuit comprises a first region on which an optical circuit is to be formed and a second region on which an electrical signal wiring is to be formed. The first region comprises an Si substrate (502), a BOX layer (504) formed on the Si substrate (502), a first SOI layer (506) formed as an optical circuit on the BOX layer (504), and a first SiO2 layer (508) formed on the first SOI layer (506). The second region comprises the Si substrate (502), the BOX layer (504), a second SiO2 layer (508) formed on the BOX layer (504), and an electrical signal wiring (510) formed on the second SiO2 layer (508).
Abstract:
This present invention is provided with: a semiconductor laser for emitting laser light in a plurality of channels; optical waveguides optically coupled in a corresponding manner to the semiconductor lasers, the optical waveguides propagating laser light as input light for each channel; optical modulators for modulating the input light and generating an optical signal; and an optical signal output unit coupled to the optical modulators, the optical signal output unit outputting the optical signal propagated from the optical modulators to the exterior. The present invention is characterized in that the semiconductor laser is arranged on the opposite side from an optical branching unit and the optical modulators, with the optical signal output unit interposed therebetween, in the plane of an opto-electric hybrid board.
Abstract:
Provided is a light receiving element with high light receiving sensitivity.The light receiving element comprises: a light absorbing layer that absorbs light to generate a carrier; and a diffraction element that converts the optical path of first polarized light, which is obliquely incident on a plane formed by the light absorbing layer, so that the first polarized light propagates in a first direction along the light absorbing layer, and that converts the optical path of second polarized light incident from the same direction as the first polarized light so that the second polarized light propagates in a second direction, opposite the first direction, along the light absorbing layer.
Abstract:
Provided is a light receiving element with high light receiving sensitivity.The light receiving element comprises: a light absorbing layer that absorbs light to generate a carrier; and a diffraction element that converts the optical path of first polarized light, which is obliquely incident on a plane formed by the light absorbing layer, so that the first polarized light propagates in a first direction along the light absorbing layer, and that converts the optical path of second polarized light incident from the same direction as the first polarized light so that the second polarized light propagates in a second direction, opposite the first direction, along the light absorbing layer.
Abstract:
A photoelectric hybrid device includes an optical connector on a flat optical surface at one end of vertical optical waveguides for inputting and outputting an optical signal. Integration of the photoelectric hybrid device into an interposer or the like is standardized. The photoelectric hybrid device includes: conductive pins connected to an electric signal pathway for a photoelectric hybrid substrate; a translucent member having a flat optical surface and a translucent part; and self-organizing optical waveguides that form an optical path between the translucent part and an optical waveguide. The flat optical surface is not lower than the tops of the electrical connection parts on the conductive pins. Collision of the optical connector and the tops of the electrical connection parts can be avoided when an optical connector on which an optical waveguide that transmits an optical signal among the optical waveguides.
Abstract:
Provided is a transmission unit for an optical transmitter/receiver or an optical transmitter provided with an optical integrated circuit, characterized in the arrangement of a single-channel or multichannel semiconductor laser and the placement of a plurality of optical waveguides.This present invention is provided with: a semiconductor laser for emitting laser light in a plurality of channels; optical waveguides optically coupled in a corresponding manner to the semiconductor lasers, the optical waveguides propagating laser light as input light for each channel; optical modulators for modulating the input light and generating an optical signal; and an optical signal output unit coupled to the optical modulators, the optical signal output unit outputting the optical signal propagated from the optical modulators to the exterior. The present invention is characterized in that the semiconductor laser is arranged on the opposite side from an optical branching unit and the optical modulators, with the optical signal output unit interposed therebetween, in the plane of an opto-electric hybrid board.
Abstract:
In a photoelectric hybrid device, an optical connector is mounted on a flat optical surface provided on one end of vertical optical waveguides for inputting and outputting an optical signal, and along with making integration of the photoelectric hybrid device into an interposer or the like easy, integration is standardized. The photoelectric hybrid device is provided with: conductive pins (108) that are connected to an electric signal pathway for a photoelectric hybrid substrate; a translucent member (116) that has a flat optical surface and also has a translucent part (118); and a plurality of self organizing optical waveguides (122) that form an optical path between the translucent part (118) and an optical waveguide of the photoelectric hybrid substrate. The constitution is such that the position of the flat optical surface is not lower than the tops of the electrical connection parts (110) on the conductive pins (108); thereby, when an optical connector on which an optical waveguide that transmits an optical signal among the optical waveguides (122) is mounted on the flat optical surface, collision of the optical connector and the tops of the electrical connection parts can be avoided.