Abstract:
Provided is a light receiving element with high light receiving sensitivity.The light receiving element comprises: a light absorbing layer that absorbs light to generate a carrier; and a diffraction element that converts the optical path of first polarized light, which is obliquely incident on a plane formed by the light absorbing layer, so that the first polarized light propagates in a first direction along the light absorbing layer, and that converts the optical path of second polarized light incident from the same direction as the first polarized light so that the second polarized light propagates in a second direction, opposite the first direction, along the light absorbing layer.
Abstract:
A semiconductor integrated circuit that reduces a loss in an electrical signal and a method for manufacturing the semiconductor integrated circuit are provided. The semiconductor integrated circuit comprises a first region on which an optical circuit is to be formed and a second region on which an electrical signal wiring is to be formed. The first region comprises an Si substrate (502), a BOX layer (504) formed on the Si substrate (502), a first SOI layer (506) formed as an optical circuit on the BOX layer (504), and a first SiO2 layer (508) formed on the first SOI layer (506). The second region comprises the Si substrate (502), the BOX layer (504), a second SiO2 layer (508) formed on the BOX layer (504), and an electrical signal wiring (510) formed on the second SiO2 layer (508).
Abstract:
A pad-array arrangement structure on a substrate for mounting an IC chip on the substrate, wherein a structure with which it is possible to maximally avoid an increase in the number of wiring layers on the substrate is obtained by devising the pad arrangement in an IC pad-array region.A embodiment of the present invention provides a pad-array structure on a substrate for mounting an IC chip on the substrate. The present invention is characterized in that: a plurality of ground pads arrayed equidistantly in a first row, and a plurality of signal pads arrayed equidistantly in a second row on the inside of and parallel to the first row, are provided on a first circumferential edge in the pad-array region; each of the signal pads passes between two adjacent ground pads in the first row and is connected to an external circuit on the substrate; and electrical signals are input to and output from the external circuit.
Abstract:
Provided is a transmission unit for an optical transmitter/receiver or an optical transmitter provided with an optical integrated circuit, characterized in the arrangement of a single-channel or multichannel semiconductor laser and the placement of a plurality of optical waveguides.This present invention is provided with: a semiconductor laser for emitting laser light in a plurality of channels; optical waveguides optically coupled in a corresponding manner to the semiconductor lasers, the optical waveguides propagating laser light as input light for each channel; optical modulators for modulating the input light and generating an optical signal; and an optical signal output unit coupled to the optical modulators, the optical signal output unit outputting the optical signal propagated from the optical modulators to the exterior. The present invention is characterized in that the semiconductor laser is arranged on the opposite side from an optical branching unit and the optical modulators, with the optical signal output unit interposed therebetween, in the plane of an opto-electric hybrid board.
Abstract:
The purpose of the present invention is to allow a silicon photonics modulator to be operated at high speed with high frequency by providing an electrode structure for the small multichannel high-density silicon photonics modulator. This electrode structure for a silicon photonics modulator includes, on the planar surface of a silicon substrate, a first layer for forming a plurality of bias electrical wirings, and a second layer formed by aligning each of a plurality of ground electrode portions and each electrical wiring in the first layer.
Abstract:
A semiconductor integrated circuit that reduces a loss in an electrical signal and a method for manufacturing the semiconductor integrated circuit are provided. The semiconductor integrated circuit comprises a first region on which an optical circuit is to be formed and a second region on which an electrical signal wiring is to be formed. The first region comprises an Si substrate (502), a BOX layer (504) formed on the Si substrate (502), a first SOI layer (506) formed as an optical circuit on the BOX layer (504), and a first SiO2 layer (508) formed on the first SOI layer (506). The second region comprises the Si substrate (502), the BOX layer (504), a second SiO2 layer (508) formed on the BOX layer (504), and an electrical signal wiring (510) formed on the second SiO2 layer (508).
Abstract:
This present invention is provided with: a semiconductor laser for emitting laser light in a plurality of channels; optical waveguides optically coupled in a corresponding manner to the semiconductor lasers, the optical waveguides propagating laser light as input light for each channel; optical modulators for modulating the input light and generating an optical signal; and an optical signal output unit coupled to the optical modulators, the optical signal output unit outputting the optical signal propagated from the optical modulators to the exterior. The present invention is characterized in that the semiconductor laser is arranged on the opposite side from an optical branching unit and the optical modulators, with the optical signal output unit interposed therebetween, in the plane of an opto-electric hybrid board.
Abstract:
An optical circuit, wherein the effects of reflected light generated by an optical component are reduced. The optical circuit (100) is provided with an optical branching (110) for branching light, an optical coupler (114) for coupling a first portion of branched light to an optical waveguide (118) for transmission, and an optical reflecting unit (116) for reflecting a second portion of the branched light, the phase difference between the reflected light from the optical coupler (114) and the reflected light from the optical reflecting unit (116) being (2m−1)π (where m is an integer) on an input side of the optical branching (110).
Abstract:
The purpose of the present invention is to allow a silicon photonics modulator to be operated at high speed with high frequency by providing an electrode structure for the small multichannel high-density silicon photonics modulator. This electrode structure for a silicon photonics modulator includes, on the planar surface of a silicon substrate, a first layer for forming a plurality of bias electrical wirings, and a second layer formed by aligning each of a plurality of ground electrode portions and each electrical wiring in the first layer.
Abstract:
Provided is a light receiving element with high light receiving sensitivity.The light receiving element comprises: a light absorbing layer that absorbs light to generate a carrier; and a diffraction element that converts the optical path of first polarized light, which is obliquely incident on a plane formed by the light absorbing layer, so that the first polarized light propagates in a first direction along the light absorbing layer, and that converts the optical path of second polarized light incident from the same direction as the first polarized light so that the second polarized light propagates in a second direction, opposite the first direction, along the light absorbing layer.