Abstract:
An optoelectronic module includes a micro-optical substrate and a beam transmitter, including a laser die mounted on the micro-optical substrate and configured to emit at least one laser beam along a beam axis. A receiver includes a detector die mounted on the micro-optical substrate and configured to sense light received by the module along a collection axis of the receiver. Beam-combining optics are configured to direct the laser beam and the received light so that the beam axis is aligned with the collection axis outside the module.
Abstract:
A method for fabrication of a device (206) from a wafer (170) of semiconductor material includes locally thinning the wafer in an area of the device to a predefined thickness by removing the semiconductor material from at least a first side of the wafer using a wet etching process, and etching through the thinned wafer in the area of the device so as to release a moving part (202) of the device. Other methods and systems for fabrication are also described.
Abstract:
Sensing apparatus includes a transmitter, which emits a beam comprising optical pulses toward a scene, and a receiver, which receives reflections of the optical pulses and outputs electrical pulses in response thereto. Processing circuitry is coupled to the receiver so as to receive, in response to each of at least some of the optical pulses emitted by the transmitter, a first electrical pulse output by the receiver at a first time due to stray reflection within the apparatus and a second electrical pulse output by the receiver at a second time due to the beam reflected from the scene, and to generate a measure of a time of flight of the optical pulses to and from points in the scene by taking a difference between the respective first and second times of output of the first and second electrical pulses.
Abstract:
Control apparatus includes an optical subsystem, which is configured to direct first light toward a scene that includes a hand of a user in proximity to a wall of a room and to receive the first light that is reflected from the scene, and to direct second light toward the wall so as to project an image of a control device onto the wall. A processor is configured to control the optical subsystem so as to generate, responsively to the received first light, a depth map of the scene, to process the depth map so as to detect a proximity of the hand to the wall in a location of the projected image, and to control electrical equipment in the room responsively to the proximity.
Abstract:
Sensing apparatus includes a transmitter, which emits a beam comprising optical pulses toward a scene, and a receiver, which receives reflections of the optical pulses and outputs electrical pulses in response thereto. Processing circuitry is coupled to the receiver so as to receive, in response to each of at least some of the optical pulses emitted by the transmitter, a first electrical pulse output by the receiver at a first time due to stray reflection within the apparatus and a second electrical pulse output by the receiver at a second time due to the beam reflected from the scene, and to generate a measure of a time of flight of the optical pulses to and from points in the scene by taking a difference between the respective first and second times of output of the first and second electrical pulses.
Abstract:
A method for fabrication of a device (206) from a wafer (170) of semiconductor material includes locally thinning the wafer in an area of the device to a predefined thickness by removing the semiconductor material from at least a first side of the wafer using a wet etching process, and etching through the thinned wafer in the area of the device so as to release a moving part (202) of the device. Other methods and systems for fabrication are also described.
Abstract:
Mapping apparatus includes a transmitter, which emits a beam comprising pulses of light, and a scanner, which is configured to scan the beam, within a predefined scan range, over a scene. A receiver receives the light reflected from the scene and to generate an output indicative of a time of flight of the pulses to and from points in the scene. A processor is coupled to control the scanner so as to cause the beam to scan over a selected window within the scan range and to process the output of the receiver so as to generate a 3D map of a part of the scene that is within the selected window.
Abstract:
An optoelectronic module includes a micro-optical substrate and a beam transmitter, including a laser die mounted on the micro-optical substrate and configured to emit at least one laser beam along a beam axis. A receiver includes a detector die mounted on the micro-optical substrate and configured to sense light received by the module along a collection axis of the receiver. Beam-combining optics are configured to direct the laser beam and the received light so that the beam axis is aligned with the collection axis outside the module.
Abstract:
Control apparatus includes an optical subsystem, which is configured to direct first light toward a scene that includes a hand of a user in proximity to a wall of a room and to receive the first light that is reflected from the scene, and to direct second light toward the wall so as to project an image of a control device onto the wall. A processor is configured to control the optical subsystem so as to generate, responsively to the received first light, a depth map of the scene, to process the depth map so as to detect a proximity of the hand to the wall in a location of the projected image, and to control electrical equipment in the room responsively to the proximity.
Abstract:
Mapping apparatus includes a transmitter, which emits a beam comprising pulses of light, and a scanner, which is configured to scan the beam, within a predefined scan range, over a scene. A receiver receives the light reflected from the scene and to generate an output indicative of a time of flight of the pulses to and from points in the scene. A processor is coupled to control the scanner so as to cause the beam to scan over a selected window within the scan range and to process the output of the receiver so as to generate a 3D map of a part of the scene that is within the selected window.