Abstract:
A method for fabricating structures on substrate having a substrate surface includes providing a set of control parameters to an ion beam source and thermal source corresponding to a desired nanostructure topology. The method also includes forming a plurality of nanostructures in a first surface area of the substrate by exposing the substrate surface to an ion beam from the ion beam source and thermal energy from the thermal source. The ion beam has a first area of effect on the substrate surface, and the thermal energy has an second area of effect on the substrate surface Each of the first area and the second area includes the first surface area. In other words, the coincident beams under the set of control parameters produces a plurality of nano structures.
Abstract:
A method for fabricating structures includes on a substrate includes providing the substrate having a substrate surface, and generating nanostructures or microstructures on the substrate surface at least in part by exposing the substrate surface to thermal particles from a thermal particle source while irradiating the substrate surface with an ion beam. The generated nanostructures or microstructures have a smaller surface area than the area of incidence of the ion beam or a beam generated by the thermal particle source. The method also includes obtaining a measurement of a characteristic of the substrate surface and adjusting at least one of the thermal particle source and the ion beam based on the measurement.
Abstract:
Disclosed are endovascular stents in which a portion of the stents have a bioactive coating for promoting repair of damaged vessels, systems comprising the stents, and methods of using the stents to promote occlusion of aneurysms and/or repair damaged vessels.
Abstract:
A method for fabricating structures includes on a substrate includes providing a set of control parameters to an ion beam source and to a thermal source corresponding to a desired structure topology. The method also includes using directed irradiation synthesis to form nano structures and/or microstructures in a first surface area of the substrate by exposing the substrate surface to an ion beam from the ion beam source and to thermal particles from the thermal source. The ion beam having a first area of effect on the substrate surface, and the thermal particles having a second area of effect on the substrate surface, each of the first area of effect and the second area of effect including the first surface area.
Abstract:
A method for fabricating structures includes on a substrate includes providing a set of control parameters to an ion beam source and to a thermal source corresponding to a desired structure topology. The method also includes using directed irradiation synthesis to form nano structures and/or microstructures in a first surface area of the substrate by exposing the substrate surface to an ion beam from the ion beam source and to thermal particles from the thermal source. The ion beam having a first area of effect on the substrate surface, and the thermal particles having a second area of effect on the substrate surface, each of the first area of effect and the second area of effect including the first surface area.
Abstract:
A method for fabricating structures includes on a substrate includes providing the substrate having a substrate surface, and generating nanostructures or microstructures on the substrate surface at least in part by exposing the substrate surface to thermal particles from a thermal particle source while irradiating the substrate surface with an ion beam. The generated nanostructures or microstructures have a smaller surface area than the area of incidence of the ion beam or a beam generated by the thermal particle source. The method also includes obtaining a measurement of a characteristic of the substrate surface and adjusting at least one of the thermal particle source and the ion beam based on the measurement.
Abstract:
A method for fabricating structures includes on a substrate includes providing the substrate having a substrate surface, and providing a set of control parameters to an ion beam source and to a thermal source corresponding to a desired structure topology. The method further includes using directed irradiation synthesis to cause self-organization of a plurality of structures comprising at least one of the group of nanostructures and microstructures in a first surface area of the substrate by exposing the substrate surface to an ion beam from the ion beam source and to thermal particles from the thermal source. The ion beam has a first area of effect on the substrate surface, and the thermal particles has a second area of effect on the substrate surface. Each of the first area of effect and the second area of effect including the first surface area.
Abstract:
A method for fabricating structures includes on a substrate includes providing the substrate having a substrate surface, and providing a set of control parameters to an ion beam source and to a thermal source corresponding to a desired structure topology. The method further includes using directed irradiation synthesis to cause self-organization of a plurality of structures comprising at least one of the group of nanostructures and microstructures in a first surface area of the substrate by exposing the substrate surface to an ion beam from the ion beam source and to thermal particles from the thermal source. The ion beam has a first area of effect on the substrate surface, and the thermal particles has a second area of effect on the substrate surface. Each of the first area of effect and the second area of effect including the first surface area.
Abstract:
A method for fabricating structures on substrate having a substrate surface includes providing a set of control parameters to an ion beam source and thermal source corresponding to a desired nanostructure topology. The method also includes forming a plurality of nanostructures in a first surface area of the substrate by exposing the substrate surface to an ion beam from the ion beam source and thermal energy from the thermal source. The ion beam has a first area of effect on the substrate surface, and the thermal energy has an second area of effect on the substrate surface Each of the first area and the second area includes the first surface area. In other words, the coincident beams under the set of control parameters produces a plurality of nano structures.
Abstract:
Disclosed are endovascular stents in which a portion of the stents have a bioactive coating for promoting repair of damaged vessels, systems comprising the stents, and methods of using the stents to promote occlusion of aneurysms and/or repair damaged vessels.