Abstract:
The invention provides a slip layer substrate which can reduce the thermal residual stresses between components induced by their mismatch of thermal expansion, thus greatly improve the reliability of electronic packages. The slip layer substrate comprises: a base material; a first metallization layer formed on the base material; a first diffusion barrier layer formed on the first metallization layer; a slip layer formed on the first diffusion barrier layer; a second diffusion barrier layer formed on the slip layer; and a second metallization layer formed on the second diffusion barrier layer.
Abstract:
A hermetically sealed package has an electrically insulating substrate, a plurality of electrically and thermally conductive tabs, and a lid. The electrically insulating substrate has a plurality of apertures and an aspect ratio of about 10:1 or greater. The plurality of electrically and thermally conductive tabs is hermetically joined to a bottom surface of the electrically insulating substrate and at least one tab covers each of the apertures. The lid is hermetically joined to a top surface of the electrically insulating substrate proximate to a perimeter of the electrically insulating substrate.
Abstract:
A flexible circuit board includes an electrically insulating top sheet and an electrically insulating bottom sheet. A plurality of conductive traces is positioned between the electrically insulating top and bottom sheets. A first conductive trace has a first contact pad, and a second conductive trace has a second contact pad. The first and second contact pads are exposed through at least one opening in the electrically insulating top sheet, and each of the first and second contact pads are configured to be connected to an LED. A third contact pad is exposed through openings in the electrically insulating top and bottom sheets, with a top surface of the third contact pad configured to be connected to the LED and a bottom surface of the third contact pad configured to be connected to a heat diffusion device.
Abstract:
The invention provides a slip layer substrate which can reduce the thermal residual stresses between components induced by their mismatch of thermal expansion, thus greatly improve the reliability of electronic packages. The slip layer substrate comprises: a base material; a first metallization layer formed on the base material; a first diffusion barrier layer formed on the first metallization layer; a slip layer formed on the first diffusion barrier layer; a second diffusion barrier layer formed on the slip layer; and a second metallization layer formed on the second diffusion barrier layer.
Abstract:
A flexible circuit board includes an electrically insulating top sheet and an electrically insulating bottom sheet. A plurality of conductive traces is positioned between the electrically insulating top and bottom sheets. A first conductive trace has a first contact pad, and a second conductive trace has a second contact pad. The first and second contact pads are exposed through at least one opening in the electrically insulating top sheet, and each of the first and second contact pads are configured to be connected to an LED. A third contact pad is exposed through openings in the electrically insulating top and bottom sheets, with a top surface of the third contact pad configured to be connected to the LED and a bottom surface of the third contact pad configured to be connected to a heat diffusion device.
Abstract:
A hermetically sealed package has an electrically insulating substrate, a plurality of electrically and thermally conductive tabs, and a lid. The electrically insulating substrate has a plurality of apertures and an aspect ratio of about 10:1 or greater. The plurality of electrically and thermally conductive tabs is hermetically joined to a bottom surface of the electrically insulating substrate and at least one tab covers each of the apertures. The lid is hermetically joined to a top surface of the electrically insulating substrate proximate to a perimeter of the electrically insulating substrate.