Abstract:
A lithography system is disclosed that provides an array of areas of imaging electromagnetic energy that are directed toward a recording medium. The reversible contrast-enhancement material is disposed between the recording medium and the array of areas of imaging electromagnetic energy.
Abstract:
A maskless lithography system is disclosed that includes an array of focusing elements, each of which focuses an energy beam from an array of sources into an array of focal spots in order to create a permanent pattern on an adjacent substrate.
Abstract:
A lithography system includes a source of radiation energy and a zone plate array to focus the radiation energy to create an array of images in order to produce a permanent pattern on a substrate. A phase-shift mask is optically located between the source of radiation energy and the zone plate array. The modulated wavefront produced by the phase-shift mask alters the field diffracted by the zone plate array, and the center lobe of the point-spread function narrows as a result.
Abstract:
A lithography system is disclosed that includes an array of focusing elements for directing focused illumination toward a recording medium, and a reversible contrast-enhancement material disposed between the recording medium and the array of focusing elements.
Abstract:
A maskless lithography system is disclosed that includes a spatial light modulator, first and second imaging areas, and first folding optics. The spatial light modulator receives illumination from an illumination source and provides a modulated illumination beam having a first cross-sectional line length in a length-wise direction and a first cross-sectional width in a width-wise direction that is substantially smaller than said first cross-sectional length. The first imaging area receives a first portion of the modulated illumination beam. The first folding optics provides a second portion of the modulated illumination beam that is adjacent the first portion of the modulated illumination beam in the length-wise direction at a second imaging area that is not adjacent the first imaging area in the length-wise direction.
Abstract:
A system and method are disclosed for providing error correction in an imaging system. The system includes an error determination unit for determining an amount of error associated with a spot at (x,y) in a binary pattern to be imaged, a determination unit for determining the location of a nearest exposed spot at (xi, yi) for each spot at (x,y), and a dose modification unit for modifying an exposure dose at the nearest exposed spot at (xi, yi) for each spot at (x,y).
Abstract:
An optical manipulation system is disclosed that includes an array of focusing elements, which focuses the energy beamlets from an array of beamlet sources into an array of focal spots in order to individually manipulate a plurality of samples on an adjacent substrate.
Abstract:
An optical material system for nanopatterning is provided that includes one or more material systems having spectrally selective reversible and irreversible transitions by saturating one of the spectrally selective reversible transitions with an optical node retaining a single molecule in a configuration and exposing the single molecule to its spectrally irreversible transitions to form a pattern.
Abstract:
An imaging system is provided. The imaging system includes a sample to be scanned by the imaging system. An absorbance modulation layer (AML) is positioned in close proximity to the sample and is physically separate from the sample. One or more sub-wavelength apertures are generated within the AML, whose size is determined by the material properties of the AML and the intensities of the illuminating wavelengths. A light source transmits an optical signal through the one or more sub-wavelength apertures generating optical near-fields that are collected for imaging.
Abstract:
A lithography system is disclosed that provides an array of areas of imaging electromagnetic energy that are directed toward a recording medium. The reversible contrast-enhancement material is disposed between the recording medium and the array of areas of imaging electromagnetic energy.