ELECTRICAL CONTACT FABRICATION
    2.
    发明申请

    公开(公告)号:US20230082114A1

    公开(公告)日:2023-03-16

    申请号:US17475962

    申请日:2021-09-15

    Abstract: In one aspect, a method includes forming an electrical path between p-type mercury cadmium telluride and a metal layer. The forming of the electrical path includes depositing a layer of polycrystalline p-type silicon directly on to the p-type mercury cadmium telluride and forming the metal layer on the layer of polycrystalline p-type silicon. In another aspect, an apparatus includes an electrical path. The electrical path includes a p-type mercury cadmium telluride layer, a polycrystalline p-type silicon layer in direct contact with the p-type mercury cadmium telluride layer, a metal silicide in direct contact with the polycrystalline p-type silicon layer, and an electrically conductive metal on the metal silicide. In operation, holes, indicative of electrical current on the electrical path, flow from the p-type mercury cadmium telluride layer to the electrically conductive metal.

    Electrical contact fabrication
    3.
    发明授权

    公开(公告)号:US11817521B2

    公开(公告)日:2023-11-14

    申请号:US17475962

    申请日:2021-09-15

    Abstract: In one aspect, a method includes forming an electrical path between p-type mercury cadmium telluride and a metal layer. The forming of the electrical path includes depositing a layer of polycrystalline p-type silicon directly on to the p-type mercury cadmium telluride and forming the metal layer on the layer of polycrystalline p-type silicon. In another aspect, an apparatus includes an electrical path. The electrical path includes a p-type mercury cadmium telluride layer, a polycrystalline p-type silicon layer in direct contact with the p-type mercury cadmium telluride layer, a metal silicide in direct contact with the polycrystalline p-type silicon layer, and an electrically conductive metal on the metal silicide. In operation, holes, indicative of electrical current on the electrical path, flow from the p-type mercury cadmium telluride layer to the electrically conductive metal.

    ALUMINUM NITRIDE PASSIVATION LAYER FOR MERCURY CADMIUM TELLURIDE IN AN ELECTRICAL DEVICE

    公开(公告)号:US20220372651A1

    公开(公告)日:2022-11-24

    申请号:US17326615

    申请日:2021-05-21

    Abstract: An electrical device includes an aluminum nitride passivation layer for a mercury cadmium telluride (Hg1-xCdxTe) (MCT) semiconductor layer of the device. The AlN passivation layer may be an un-textured amorphous-to-polycrystalline film that is deposited onto the surface of the MCT in its as-grown state, or overlying the MCT after the MCT surface has been pre-treated or partially passivated, in this way fully passivating the MCT. The AlN passivation layer may have a coefficient of thermal expansion (CTE) that closely matches the CTE of the MCT layer, thereby reducing strain at an interface to the MCT. The AlN passivation layer may be formed with a neutral inherent (residual) stress, provide mechanical rigidity, and chemical resistance to protect the MCT.

Patent Agency Ranking