Abstract:
An assembly body for micromirror chips that partly encloses an internal cavity, the assembly body including at two sides oriented away from one another, at least one respective partial outer wall that is fashioned transparent for a specified spectrum, and the assembly body having at least one first outer opening on which a first micromirror chip can be attached, and a second outer opening on which a second micromirror chip can be attached, in such a way that a light beam passing through the first partial outer wall is capable of being deflected by the first micromirror chip onto the second micromirror chip, and is capable of being deflected by the second micromirror chip through the second partial outer wall. A mirror device and a production method for a mirror device are also described.
Abstract:
A mirror system including a mirror that is mounted in a manner that permits oscillation, having a coil and at least one first spring that intercouples the mirror and the coil in a way that allows the coil to be placed as a counterweight to the oscillating mirror. Also a corresponding projection device.
Abstract:
A method for processing a signal includes reading in a signal and filtering the signal using a first number of band-pass filters in order to obtain one band-pass filtered signal per band-pass filter. The first number of band-pass filters is configured to each allow distinct frequency ranges of the signal to pass. The method further includes calculating at least one signal parameter each from the plurality of band-pass filtered signals. The method further includes performing analog-to-digital conversion of the plurality of band-pass filtered signals or signals derived therefrom using a plurality of signal parameters such that a second number of analog-to-digital converters used to perform the analog-to-digital conversion is less than the first number of band-pass filters used to filter the signal.
Abstract:
A method for processing a signal includes reading in a signal and filtering the signal using a first number of band-pass filters in order to obtain one band-pass filtered signal per band-pass filter. The first number of band-pass filters is configured to each allow distinct frequency ranges of the signal to pass. The method further includes calculating at least one signal parameter each from the plurality of band-pass filtered signals. The method further includes performing analog-to-digital conversion of the plurality of band-pass filtered signals or signals derived therefrom using a plurality of signal parameters such that a second number of analog-to-digital converters used to perform the analog-to-digital conversion is less than the first number of band-pass filters used to filter the signal.
Abstract:
A mirror system including a mirror that is mounted in a manner that permits oscillation, having a coil and at least one first spring that intercouples the mirror and the coil in a way that allows the coil to be placed as a counterweight to the oscillating mirror. Also a corresponding projection device.
Abstract:
A micromechanical component. The micromechanical component includes: a mount; a displaceable part; and a first serpentine spring and a second serpentine spring which is embodied mirror-symmetrically with respect to the first serpentine spring in terms of a first plane of symmetry; a first actuator device and a second actuator device being embodied in such a way that by way of the first actuator device and the second actuator device, periodic deformations, mirror-symmetrical in terms of the first plane of symmetry, of the first serpentine spring and of the second serpentine spring are excitable; the micromechanical component also encompassing a first torsion spring and a second torsion spring that each extend along a rotation axis; and the displaceable part being displaceable, at least by way of the periodic and mirror-symmetrical deformations of the first serpentine spring and of the second serpentine spring, around the rotation axis with respect to the mount.
Abstract:
A micromechanical sensor unit, including: a substrate and an edge layer, which is situated on the substrate and laterally frames an inner area above the substrate; at least one diaphragm, which spans the inner area and forms a covered cavity above the substrate; at least one support point, which is situated between the substrate and the diaphragm inside the cavity and attaches the diaphragm to the edge layer and/or to the at least one support point. The support point separates the diaphragm into at least one measuring area that is movable through force action and at least one reference area that is not movable through force action. The substrate and the diaphragm, inside the cavity, include electrodes, which face one another in the measuring area and the reference area.
Abstract:
A micromechanical sound transducer system includes a substrate that includes (a) a cavity with a cavity edge area, (b) a front side, and (c) a rear side; a piezoelectric vibrating beam that is elastically suspended on the front side and that extends across the cavity; and, for the piezoelectric vibrating beam, a respective deflection limiting device that is on a front edge area of the respective vibrating beam and that is configured to limit a deflection of the respective vibrating beam to a limiting deflection by causing the respective front edge area of the respective vibrating beam to interact with the cavity edge area or an opposing front edge area of another vibrating beam.
Abstract:
A micromechanical component having a substrate which includes a micro-electromechanical microphone structure, the micro-electromechanical microphone structure encompassing at least one piezoelectric layer and at least one polymer mass as at least part of a packaging of the substrate fitted with the micro-electromechanical microphone structure, which is in contact with at least a partial outer surface of the substrate fitted with the micro-electromechanical microphone structure. A method is also described for packaging a substrate having a micro-electromechanical microphone structure encompassing at least one piezoelectric layer by developing at least a portion of a packaging of the substrate fitted with the micro-electromechanical microphone structure from at least one polymer mass, and the at least one polymer mass being applied directly on at least a partial outer surface of the substrate fitted with the micro-electromechanical microphone structure.
Abstract:
A micromechanical sensor unit, including: a substrate and an edge layer, which is situated on the substrate and laterally frames an inner area above the substrate; at least one diaphragm, which spans the inner area and forms a covered cavity above the substrate; at least one support point, which is situated between the substrate and the diaphragm inside the cavity and attaches the diaphragm to the edge layer and/or to the at least one support point. The support point separates the diaphragm into at least one measuring area that is movable through force action and at least one reference area that is not movable through force action. The substrate and the diaphragm, inside the cavity, include electrodes, which face one another in the measuring area and the reference area.