Abstract:
Systems and methods for a micro-electromechanical system (MEMS) device are provided. In one embodiment, a system comprises a first outer layer and a first device layer comprising a first set of MEMS devices, wherein the first device layer is bonded to the first outer layer. The system also comprises a second outer layer and a second device layer comprising a second set of MEMS devices, wherein the second device layer is bonded to the second outer layer. Further, the system comprises a central layer having a first side and a second side opposite that of the first side, wherein the first side is bonded to the first device layer and the second side is bonded to the second device layer.
Abstract:
A method of error compensation for an inertial measurement unit is provided. The method comprises providing a first object including an inertial measurement unit, providing a second object proximal to the first object, and determining an initial position and orientation of the first object. A motion update is triggered for the inertial measurement unit when the second object is stationary with respect to a ground surface. At least one position vector is measured between the first object and the second object when the first object is in motion and the second object is stationary. A distance, direction, and orientation of the second object with respect to the first object are calculated using the at least one position vector. An error correction is then determined for the inertial measurement unit from the calculated distance, direction, and orientation of the second object with respect to the first object.
Abstract:
A hermetically sealed MEMS device package comprises a MEMS device platform, a hermetic interface chip, and an outer seal ring. The MEMS device platform includes a MEMS device surrounded by a continuous outer boundary wall with a top surface. The hermetic interface chip includes a glass substrate and at least one silicon mesa. The glass substrate includes at least one hole and has a lower surface with an inner portion surrounded by an outer portion. The at least one silicon mesa is bonded to the inner portion of the lower surface of the glass substrate, such that the at least one silicon mesa is aligned with the at least one hole in the glass substrate. The outer seal ring bonds the outer portion of the lower surface of the glass substrate to the top surface of the continuous outer boundary wall of the MEMS device platform.
Abstract:
Systems and methods for enabling hermetic sealing at the wafer level during fabrication of a microelectromechanical sensor (MEMS) device. The MEMS device has a specialized hermetic interface chip (HIC) that facilitates a stable hermetic sealing process. The HIC includes a plurality of vias in a substrate layer, a plurality of mesas having etched portions, a seal ring, a plurality of conductive leads on a first side of the HIC, and a plurality of conductive leads on a second side of the HIC. The plurality of conductive leads on the first side of the HIC feeds from the etched portions of the plurality of mesas through the plurality of vias in the substrate layer to the plurality of conductive leads on the second side of the HIC. The conductive leads are capable of connecting an external circuit to the MEMS device.
Abstract:
A lateration system comprising at least one transmitter attached to a first object and configured to emit pulses, three or more receivers attached to at least one second object and configured to receive the pulses emitted by the transmitter, and a processor configured to process information received from the three or more receivers, and to generate a vector based on lateration. Lateration is one of multilateration and trilateration. The vector is used by the processor to constrain error growth in a navigation solution.
Abstract:
Layers of boron-doped silicon having reduced out-of-plane curvature are disclosed. The layers have substantially equal concentrations of boron near the top and bottom surfaces. Since the opposing concentrations are substantially equal, the compressive stresses on the layers are substantially balanced, thereby resulting in layers with reduced out-of-plane curvature.
Abstract:
A tunable filter having a top mirror, a bottom mirror, and one or more intervening layers. The one or more intervening layers preferably have a refractive index that changes with temperature. By heating the one or more intervening layers, the wavelength that is selected by the optical filter can be controlled. The one or more intervening layers are preferably heated by passing current through the one or more intervening layers, or by passing current through a separate resistive layer that is thermally coupled to the one or more intervening layers. Such a filter can provide a high degree of wavelength selectivity in a robust and stable manner.
Abstract:
Layers of boron-doped silicon having reduced out-of-plane curvature are disclosed. The layers have substantially equal concentrations of boron near the top and bottom surfaces. Since the opposing concentrations are substantially equal, the compressive stresses on the layers are substantially balanced, thereby resulting in layers with reduced out-of-plane curvature.
Abstract:
Systems and methods for a micro-electromechanical system (MEMS) apparatus are provided. In one embodiment, a system comprises a first double chip that includes a first base layer; a first device layer bonded to the first base layer, the first device layer comprising a first set of MEMS devices; and a first top layer bonded to the first device layer, wherein the first set of MEMS devices is hermetically isolated. The system also comprises a second double chip that includes a second base layer; a second device layer bonded to the second base layer, the second device layer comprising a second set of MEMS devices; and a second top layer bonded to the second device layer, wherein the second set of MEMS devices is hermetically isolated, wherein a first top surface of the first top layer is bonded to a second top surface of the second top layer.
Abstract:
A process for packaging micro-electro-mechanical systems (MEMS) devices comprises providing a lower cover wafer and an upper cover wafer, providing a semiconductor wafer including a plurality of MEMS devices on a substrate layer, bonding the semiconductor wafer to a first surface of the lower cover wafer, and bonding a second surface of the upper cover wafer to the semiconductor wafer. The first surface of the lower cover wafer and the second surface of the upper cover wafer define a plurality of hermetically sealed cavity sections when bonded to the semiconductor wafer such that each of the MEMS devices is located inside one of the sealed cavity sections. A plurality of holes are formed that extend from the first surface of the upper cover wafer to the second surface of the upper cover wafer after the upper cover wafer is bonded to the semiconductor wafer. A metal lead layer is then deposited in each of the holes to provide an electrical connection with the MEMS devices.