Abstract:
A connection structure embedded substrate includes a printed circuit board including a plurality of first insulating layers, and a plurality of first wiring layers disposed on or between the plurality of first insulating layers; and a connection structure embedded in the printed circuit board, and including a plurality of second insulating layers and a plurality of second wiring layers disposed on or between the plurality of second insulating layers. A lowermost second insulating layer of the plurality of second insulating layers includes an organic insulating material, and is in contact with an upper surface of one of the plurality of first insulating layers.
Abstract:
A printed circuit board includes an insulating layer and a circuit layer disposed on the insulating layer. The circuit layer includes a first circuit pattern and a second circuit pattern. Each of the first and second circuit patterns has a first side surface, a second side surface opposing the first side surface, and a top surface connected to ends of the first and second side surfaces, when viewed in a cross section direction. The first side surface of the first circuit pattern and the first side surface of the second circuit pattern face each other. A height of the first side surface of the first circuit pattern is greater than a height of the second side surface of the first circuit pattern, and a height of the first side surface of the second circuit pattern is greater than a height of the second side surface of the second circuit pattern.
Abstract:
A connection structure embedded substrate includes: a printed circuit board including a plurality of first insulating layers and a plurality of first wiring layers, respectively disposed on or between the plurality of first insulating layers; and a connection structure disposed in the printed circuit board and including a plurality of internal insulating layers and a plurality of internal wiring layers, respectively disposed on or between the plurality of internal insulating layers. Among the plurality of internal wiring layers, an internal wiring layer disposed in one surface of the connection structure is in contact with one surface of a first insulating layer, among the plurality of first insulating layers.
Abstract:
A connection structure embedded substrate includes: a printed circuit board including a plurality of first insulating layers and a plurality of first wiring layers, respectively disposed on or between the plurality of first insulating layers; and a connection structure disposed in the printed circuit board and including a plurality of internal insulating layers and a plurality of internal wiring layers, respectively disposed on or between the plurality of internal insulating layers. Among the plurality of internal wiring layers, an internal wiring layer disposed in one surface of the connection structure is in contact with one surface of a first insulating layer, among the plurality of first insulating layers.
Abstract:
A connection structure embedded substrate includes: a printed circuit board including a plurality of first insulating layers and a plurality of first wiring layers, respectively disposed on or between the plurality of first insulating layers; and a connection structure disposed in the printed circuit board and including a plurality of internal insulating layers and a plurality of internal wiring layers, respectively disposed on or between the plurality of internal insulating layers. Among the plurality of internal wiring layers, an internal wiring layer disposed in one surface of the connection structure is in contact with one surface of a first insulating layer, among the plurality of first insulating layers.
Abstract:
The present invention relates to an electronic component embedded printed circuit board and a method for manufacturing the same.An electronic component embedded printed circuit board of the present invention includes a core having a cavity; an electronic component inserted in the cavity and having a bonding coating layer on an outer peripheral surface; insulating layers laminated on and under the core and in contact with the bonding coating layer; and circuit patterns provided on the insulating layers.
Abstract:
A package substrate includes a wiring substrate comprising an insulating layer, a first wiring layer, and a second wiring layer, wherein the first wiring layer comprises a first pad pattern, and the second wiring layer comprises a second pad pattern; a first passivation layer disposed on the insulating layer, and having a first opening portion passing through a region corresponding to at least a portion of the first pad pattern; a second passivation layer disposed on the insulating layer, and having a second opening portion passing through a region corresponding to at least a portion of the second pad pattern; and a reinforcing layer disposed on the second passivation layer, and having a through portion exposing the second opening portion. An upper surface of the first wiring layer is located in a position higher than a position of the lower surface of the insulating layer.
Abstract:
A package substrate includes an insulating layer; and circuit patterns formed on the insulating layer and divided into pad areas and pattern areas that have different heights. In one aspect, there can be a non-conductive paste (NCP) interposed between the circuit patterns and pads of a die connected to the circuit patterns to fix the die onto the insulating layer.