Abstract:
A method of manufacturing a wiring substrate includes providing a support that includes a support substrate and first and second metal layers stacked in order over the support substrate. A surface of the second metal layer facing away from the first metal layer is a roughened surface or formed of particles. The second metal layer is selectively etchable with respect to the first metal layer. The method further includes selectively forming a third metal layer on the surface of the second metal layer, forming a first wiring layer that is a laminate of the second and third metal layers by simultaneously roughening the third metal layer and dissolving the second metal layer not covered with the third metal layer using an etchant, forming an insulating layer that covers the first wiring layer on the first metal layer, removing the support substrate, and removing the first metal layer by etching.
Abstract:
A wiring board includes an electrode pad having a first surface and a second surface located on an opposite side from the first surface, a conductor pattern connected to the first surface of the electrode pad, and an insulator layer embedded with the electrode pad and the conductor pattern. The insulator layer covers an outer peripheral portion of the second surface of the electrode pad.
Abstract:
A wiring board includes an insulating layer; a connection part provided on a surface of the insulating layer, the connection part including a first plating layer including a flat surface and a curved surface continuous with the flat surface, wherein the flat surface and the curved surface are exposed on the insulating layer, and an end portion of the curved surface is in contact with the surface of the insulating layer; and a second plating layer formed on an interior surface of the first plating layer so as to be coated with the first plating layer; and a via formed in the insulating layer so as to be connected to the second plating layer.
Abstract:
A wiring substrate includes a first wiring layer, a first insulation layer, and a second wiring layer. The first insulation layer covers an upper surface and a side surface of the first wiring layer and exposes a lower surface of the first wiring layer. The second wiring layer is stacked on at least one of a lower surface of the first insulation layer and the lower surface of the first wiring layer.
Abstract:
A wiring substrate includes an insulating layer including a reinforcement member and having a first surface and a second surface positioned on an opposite side of the first surface, an electrode pad exposed from the first surface, a layered body including first insulating layers and being formed on the second surface, the first insulating layers having a first insulating material as a main component, another layered body including second insulating layers and being formed on the layered body, the second insulating layers having a second insulating material as a main component, and another electrode pad exposed from a surface of the another layered body that is opposite to the layered body. The number of the first insulating layers is equal to that of the second insulating layers. The first insulating layers have a thermal expansion coefficient that is greater than that of the second insulating layers.
Abstract:
A disclosed wiring substrate includes an insulating layer, a recess formed on a surface of the insulating layer, and an alignment mark formed inside of the recess, wherein a face of the alignment mark is roughened, recessed from the surface of the insulating layer, and exposed from the recess.
Abstract:
A wiring substrate includes a core, a first wiring layer formed on a first surface of the core, and a second wiring layer formed on a second surface of the core. The first wiring layer includes a first opening, and the second wiring layer includes a second opening. The core includes a plurality of electronic component accommodating bores that extend through the core at portions exposed from the first and second openings. An electronic component is arranged in each electronic component accommodating bore. The electronic component accommodating bores are filled with an insulating layer. The core includes a partition located between adjacent electronic component accommodating bores. The partition is formed by part of the core.
Abstract:
A wiring substrate includes a first wiring layer, a first insulating layer, a second wiring layer, and a first wiring pattern. The second wiring layer includes a first metal foil that is thinner than the first wiring layer. A first via in the first insulating layer connects the first and second wiring layers. The first via is arranged to fill a first through hole and a first recess. The first through hole extends through the first insulating layer and has a first open end with a first opening diameter and a second open end with a smaller second opening diameter. The first recess is in communication with the first through hole. The first recess has a larger diameter than the second opening diameter. The first metal foil includes a first opening communicating with the first through hole and having a larger opening diameter larger than the first opening diameter.
Abstract:
A wiring substrate includes a first insulating layer, an adhesion insulating layer formed under the first insulating layer and an outer face of the adhesion insulating layer is made to a roughened face, a first wiring layer formed on the first insulating layer, a second insulating layer formed on the first insulating layer, and in which a first via hole reaching the first wiring layer is provided, a second wiring layer formed on the second insulating layer, and connected to the first wiring layer through the first via hole, a second via hole formed in the adhesion insulating layer and the first insulating layer, and reaching the first wiring layer, and a third wiring layer formed on the outer face of the adhesion insulating layer, and connected to the first wiring layer through the second via hole.
Abstract:
A wiring board includes an insulating layer including a first insulating film provided with a first surface and a second surface that is opposite to the first surface, and composed of only resin, and a second insulating film provided with a first surface and a second surface that is opposite to the first surface, including a reinforcing member and resin, in which the reinforcing member is impregnated with the resin, and stacked on the first surface of the first insulating film such that the second surface of the second insulating film contacts the first surface of the first insulating film and the second surface of the first insulating film is exposed outside; and a first wiring layer embedded in the first insulating film, a predetermined surface of the first wiring layer being exposed from the second surface of the first insulating film.