Abstract:
There is provided a head chip and so on capable of achieving the reduction in power consumption and the improvement in print image quality while suppressing the manufacturing cost of the head chip. The head chip according to an embodiment of the present disclosure includes an actuator plate having a plurality of ejection grooves and a plurality of electrodes, a nozzle plate having a plurality of nozzle holes, and a cover plate having a wall part, a first through hole, and a second through hole. The plurality of nozzle holes includes a plurality of first nozzle holes arranged so as to be shifted toward the first through hole, and a plurality of second nozzle holes arranged so as to be shifted toward the second through hole. In a first ejection groove communicated with the first nozzle hole, a first cross-sectional area of a part communicated with the first through hole is smaller than a second cross-sectional area of a part communicated with the second through hole. Positions of both ends of the electrode along the extending direction of the ejection grooves are each aligned in the plurality of electrodes along a predetermined direction.
Abstract:
A liquid ejecting head is mounted on a carriage in which a first positioning hole defined by a first inner surface is provided. The liquid ejecting head includes a first positioning member and a first intermediate member. The first intermediate member includes a first expansion portion being capable of being inserted into a first positioning hole and abutting on the first inner surface by expanding in a radial direction intersecting with an insertion direction of the first expansion portion. The first expansion portion includes a first insertion hole into which the first positioning member is inserted and expands in the radial direction by the first positioning member being inserted into the first insertion hole.
Abstract:
A liquid jet head includes a piezoelectric body substrate having an upper surface, a lower surface, at least two groove arrays each having ejection grooves penetrating from the upper surface to the lower surface, and a first opening portion penetrating from the upper surface to the lower surface between the at least two groove arrays. Drive electrodes are provided on side surfaces of the ejection grooves and terminal electrodes are electrically connected to the drive electrodes. A flexible circuit board is electrically connected to the terminal electrodes and extends from the lower surface to the upper surface of the piezoelectric body substrate through the first opening portion.
Abstract:
There are provided a liquid jet head and a liquid jet recording device capable of enhancing the reliability. A liquid jet head according to an embodiment of the disclosure includes a liquid jet section from which liquid is jetted, an electronic control section electrically connected to the liquid jet section, a main protective member adapted to cover a periphery of the electronic control section, a connection section attached to the electronic control section and adapted to electrically connect an outside of the liquid jet head and the electronic control section to each other, and a connection section protective member configured so as to make a state transition between a protection state of covering the connection section and an exposure state of exposing the connection section.
Abstract:
A liquid jet head and a liquid jet recording device capable of accurately detecting the temperature of the ink are provided. A liquid jet head according to an embodiment of the disclosure includes a flow channel member provided with a flow channel of a liquid, and having a high heat conduction part disposed so as to have contact with the liquid flowing inside the flow channel, and a low heat conduction part having lower thermal conductivity than thermal conductivity of the high heat conduction part, a temperature detection element disposed outside the flow channel, and attached to the high heat conduction part, and a liquid jet section from which the liquid is jetted.
Abstract:
A liquid jet head has a piezoelectric body substrate which includes a groove row in which ejection grooves penetrating the piezoelectric body substrate from an upper surface through a lower surface and non-ejection grooves open on the upper surface are alternately arranged in a reference direction, common drive electrodes formed on both side surfaces of each of the ejection grooves, and individual drive electrodes formed on both side surfaces of each of the non-ejection grooves. A cover plate is bonded to the upper surface of the piezoelectric body substrate and includes a liquid chamber communicating with the ejection grooves, first through electrodes which penetrate the cover plate in a thickness direction and are electrically connected to the individual drive electrodes, and individual terminals placed on a front surface of the cover plate opposite to the piezoelectric body substrate and electrically connected to the first through electrodes.
Abstract:
A liquid jet head includes a flow path member having a supply port through which liquid is supplied and a discharge port through which the liquid is discharged, and a cover plate having a liquid supply chamber that communicates with the supply port and a liquid discharge chamber that communicates with the discharge port. An actuator substrate has a plurality of parallel channels that extend between the liquid supply chamber and the liquid discharge chamber and the channels communicate with respective nozzles formed in a nozzle plate. The flow path member, cover plate, actuator substrate and nozzle plate constitute a laminated structure. A communication path is provided in one or both of the cover plate and flow path member for bypassing the liquid from the liquid supply chamber to the liquid discharge chamber so that air bubbles trapped in the liquid can be effectively discharged to the outside.
Abstract:
There are provided a head chip and so on capable of improving the print image quality. The head chip according to an embodiment of the present disclosure is provided with an actuator plate having a plurality of ejection grooves and a nozzle plate having a plurality of nozzle holes individually communicated with the plurality of ejection grooves. The plurality of ejection grooves is arranged side by side so as to at least partially overlap each other along a predetermined direction. Further, the nozzle holes adjacent to each other along the predetermined direction out of the plurality of nozzle holes are arranged so as to be shifted from each other along an extending direction of the ejection grooves in the nozzle plate.
Abstract:
A liquid jet head chip capable of exerting a stable ejection performance is provided. The liquid jet head chip is provided with an actuator plate and an electrode. The actuator plate has an obverse surface, a reverse surface, and two or more ejection channels which penetrate the actuator plate in a thickness direction from the obverse surface toward the reverse surface, which are disposed so as to be adjacent to each other at intervals in a first direction perpendicular to the thickness direction, and which are disposed so as to extend in a second direction perpendicular to both of the thickness direction and the first direction. The electrode is disposed on an inner surface of the ejection channel, and includes a first electrode part covering the inner surface of the ejection channel continuously from the obverse surface toward the reverse surface, and a second electrode part covering the inner surface of the ejection channel continuously from the reverse surface toward the obverse surface, and overlapping at least a part of the first electrode part.
Abstract:
Isolation between electrodes is ensured to enhance resistance to a liquid. A conductive film is provided to a surface of a piezoelectric substrate, and laser processing is performed in a groove extending direction on the conductive film between a first groove and a second groove provided to the piezoelectric substrate to thereby form a laser processing area where the conductive film is removed to the surface of the piezoelectric substrate between the first groove and the second groove. In forming the laser processing area, an irradiation operation with a laser is performed along a plurality of laser processing lines extending in the groove extending direction. Further, the irradiation operation with the laser is performed a plurality of times for each of the laser processing lines, and the irradiation operations with the laser performed along the same laser processing line of the plurality of laser processing lines are performed at a time interval from when ending a previous irradiation operation with the laser to when starting a subsequent irradiation operation with the laser.