Abstract:
A coil form with a low inter-winding capacitance is disclosed including a bobbin formed from an electrically insulating material and including a tube section shaped wall. A coil is mechanically supported by the bobbin and includes a first plurality of conductor windings on the outside of the wall and a second plurality of conductor windings on the inside of the wall. Furthermore, a transformer with such a coil form as any of its primary or secondary windings is disclosed.
Abstract:
An inductor assembly includes at least one inductor coil, a metallic inductor housing at least partially enclosing the inductor coil, and a potting material both contacting the inductor coil and the metallic inductor housing and thermally coupling the inductor coil to the metallic inductor housing. The inductor coil includes a bobbin made of electrically insulating material, and an inductor winding made of an electric conductor wound on the bobbin. The inductor winding further has an outer circumference and two end faces, and an electric insulation covers the outer circumference of the inductor winding. Coil lids made of electrically insulating material at least partially cover the end faces of the inductor winding and adjacent areas of the electric insulation covering the outer circumference of the inductor winding such that a distance of any point of the end faces of the inductor winding to the metallic housing along any way not passing through the electrically insulating material of the coil lids or the bobbin is at least a required minimum creepage distance.
Abstract:
An inductor assembly includes at least one inductor coil, a metallic inductor housing at least partially enclosing the inductor coil, and a potting material both contacting the inductor coil and the metallic inductor housing and thermally coupling the inductor coil to the metallic inductor housing. The inductor coil includes a bobbin made of electrically insulating material, and an inductor winding made of an electric conductor wound on the bobbin. The inductor winding further has an outer circumference and two end faces, and an electric insulation covers the outer circumference of the inductor winding. Coil lids made of electrically insulating material at least partially cover the end faces of the inductor winding and adjacent areas of the electric insulation covering the outer circumference of the inductor winding such that a distance of any point of the end faces of the inductor winding to the metallic housing along any way not passing through the electrically insulating material of the coil lids or the bobbin is at least a required minimum creepage distance.
Abstract:
The disclosure discloses a driver circuit that is intended for a power semiconductor switch having a unidirectional flow direction and having a control connection, a reference potential connection and a controlled connection. The driver circuit includes a driver module having a control output, a reference potential input and an overvoltage monitoring input. In this case, the control output is connected to a first connection that is provided for connection to the control connection, the reference potential input is connected to a second connection that is provided for connection to the reference potential connection, and the overvoltage monitoring input is connected, via a first diode, to a third connection that is provided for connection to the controlled connection. The overvoltage monitoring input is also connected to the reference potential input via a capacitance. A connection path from the second connection to the third connection via the capacitance and the first diode is switchable in the driver circuit by means of an actively controllable switching element. Furthermore, the disclosure also discloses a circuit arrangement comprising such a driver circuit and a power semiconductor switch with a unidirectional flow direction as well as a bidirectional circuit arrangement comprising two subcircuit arrangements that are each formed by such a circuit arrangement. Such a bidirectional circuit arrangement is used in an inverter having a BSNPC bridge circuit.
Abstract:
The disclosure relates to an integral inductor arrangement with at least three magnetic loops arranged side by side to each other in a row and at least one winding associated with each of the magnetic loops. The magnetic loops are formed by individual core elements, each of which being part of one of the magnetic loops, and shared core elements, each of which being part of two adjacent of the magnetic loops. The shared core elements are separated from the individual core elements by magnetic gaps and each of the at least one winding is arranged around one of the individual core elements. The disclosure further relates to a use of such integral inductor arrangement within a 3-phase AC-filter for a power inverter for feeding electrical power into a power grid.
Abstract:
An inductor assembly is disclosed that includes a magnetic core with a center leg and a number n of phase legs, wherein n is an integer and n>1. Each phase leg is magnetically connected to the center leg by an upper bridge and a lower bridge to form a magnetic main loop, a midpoint of the phase leg being magnetically connected to a center point of the center leg by a shunt element comprising a gap. Each phase leg further includes an upper inductor coil disposed on an upper phase leg section located between the midpoint and the upper bridge and a lower inductor coil disposed on a lower phase leg section located between the midpoint and the lower bridge. Alternatively, the upper and lower inductor coils are disposed on respective upper and lower bridges.
Abstract:
The disclosure discloses a driver circuit that is intended for a power semiconductor switch having a unidirectional flow direction and having a control connection, a reference potential connection and a controlled connection. The driver circuit includes a driver module having a control output, a reference potential input and an overvoltage monitoring input. In this case, the control output is connected to a first connection that is provided for connection to the control connection, the reference potential input is connected to a second connection that is provided for connection to the reference potential connection, and the overvoltage monitoring input is connected, via a first diode, to a third connection that is provided for connection to the controlled connection. The overvoltage monitoring input is also connected to the reference potential input via a capacitance. A connection path from the second connection to the third connection via the capacitance and the first diode is switchable in the driver circuit by means of an actively controllable switching element. Furthermore, the disclosure also discloses a circuit arrangement comprising such a driver circuit and a power semiconductor switch with a unidirectional flow direction as well as a bidirectional circuit arrangement comprising two subcircuit arrangements that are each formed by such a circuit arrangement. Such a bidirectional circuit arrangement is used in an inverter having a BSNPC bridge circuit.
Abstract:
A step-up converter includes a first inductance electrically connecting a first DC voltage input of the step-up converter to a first junction point, a step-up converter switch connecting the first junction point to a second DC voltage input and a second DC voltage output of the step-up converter, a first diode connecting the first junction point to a first DC voltage output of the step-up converter, and a snubber circuit comprising a charging path and a discharging path. The discharging path runs as a series connection of a capacitor and a second diode from the first junction point to the first DC voltage output, and the charging path is connected at its one end to a junction point between the capacitor and the second diode and is arranged such that the capacitor is charged when the step-up converter switch is switched on.
Abstract:
The disclosure relates to an integral inductor arrangement with at least three magnetic loops arranged side by side to each other in a row and at least one winding associated with each of the magnetic loops. The magnetic loops are formed by individual core elements, each of which being part of one of the magnetic loops, and shared core elements, each of which being part of two adjacent of the magnetic loops. The shared core elements are separated from the individual core elements by magnetic gaps and each of the at least one winding is arranged around one of the individual core elements. The disclosure further relates to a use of such integral inductor arrangement within a 3-phase AC-filter for a power inverter for feeding electrical power into a power grid.
Abstract:
The application discloses a filter-choke to be used in an EMI filter that includes a closed magnetic core having two core-legs, wherein the magnetic core is configured to be assembled out of at least two core-segments, at least two bobbins, each bobbin having a base flange and a tubular section extending in perpendicular direction from the base flange, wherein the tubular section has an opening for receiving one of the two core-legs, and a coil formed by an electric conductor having multiple windings arranged around the tubular section of each bobbin.