Abstract:
The present disclosure relates to a glass interposer module, an imaging device, and an electronic apparatus capable of reducing occurrence of distortion caused by thermal expansion during manufacture. A light transmissive member is charged between a glass interposer and a CMOS image sensor (CIS). Since rigidity of the glass interposer can be enhanced by this configuration, it is possible to suppress deflection of the CIS and also reduce influence of distortion given to a gyro sensor and the like which are equipped on the glass interposer, and therefore, erroneous detection of a gyro signal can be reduced. The present disclosure can be applied to a glass interposer module.
Abstract:
A functional device includes: a substrate; and a movable section configured to be held by the substrate and to be movable along a first direction in a surface of the substrate, in which the movable section includes a plurality of first shaft portions with relatively high rigidity, the plurality of first shaft portions are arranged side by side to extend along the first direction and to be line-symmetric to one another, and protrusions configured to brake the movable section are provided on substantially extended lines of the first shaft portions.
Abstract:
There is provided an electronic device including a first member formed to include at least a part of a substrate material, a second member formed to include at least a part of the substrate material and configured to be relatively movable with respect to the first member, and a fuse configured to include at least a part of the substrate material and configured to electrically connect the first member to the second member via the substrate material.
Abstract:
[Object] To provide an electrostatic device capable of improving device characteristics.[Solving Means] An electrostatic device according to an embodiment of the present technology includes an electrically conductive base material, a first conductor layer, a second conductor layer, and a bonding layer. The first conductor layer includes a first electrode portion and a first base portion and is connected to a signal line. The first base portion supports the first electrode portion and is disposed on the base material. The second conductor layer includes a second electrode portion and a second base portion and is connected to a reference potential. The second electrode portion is opposed to the first electrode portion in a first axis direction and configured to be movable relative to the first electrode portion in the first axis direction. The second base portion supports the second electrode portion and is disposed on the base material. The bonding layer is disposed between the base material and the first and second base portions and includes a plurality of first bonding portions that partially support at least the first base portion.
Abstract:
[Object] To provide an electrostatic device capable of improving device characteristics.[Solving Means] An electrostatic device according to an embodiment of the present technology includes an electrically conductive base material, a first conductor layer, a second conductor layer, and a bonding layer. The first conductor layer includes a first electrode portion and a first base portion and is connected to a signal line. The first base portion supports the first electrode portion and is disposed on the base material. The second conductor layer includes a second electrode portion and a second base portion and is connected to a reference potential. The second electrode portion is opposed to the first electrode portion in a first axis direction and configured to be movable relative to the first electrode portion in the first axis direction. The second base portion supports the second electrode portion and is disposed on the base material. The bonding layer is disposed between the base material and the first and second base portions and includes a plurality of first bonding portions that partially support at least the first base portion.
Abstract:
To provide a contact point structure of an electronic device capable of maintaining stable impact resistance. There is provided a contact point structure including: a base portion that is a semiconductor substrate; a movable contact point portion that is supported by the base portion and is a part of a movable member capable of being driven in a predetermined direction; and a fixed contact point portion that faces the movable contact point portion. The fixed contact point portion includes a fixed portion that is supported by the base portion and an extending member that extends from the fixed portion and is capable of being displaced relative to the fixed portion.
Abstract:
A signal transmission cable has a cable including a dielectric layer and a metallic layer. The signal transmission cable further includes a connector having a chip with a terminal. The connector includes a substrate having an organic layer, and a portion of the organic layer extends from the substrate so as to form the dielectric layer of the cable. The metallic layer is located on the dielectric layer and is directly connected to the terminal.
Abstract:
A waveguide includes: a waveguide portion including a first surface and a second surface that are opposed to each other; a first transmission line provided on the first surface of the waveguide portion; a second transmission line provided on the second surface of the waveguide portion; and a first conversion structure inputting a signal from the first transmission line to the waveguide portion and converting the signal.
Abstract:
A signal transmission cable comprises a cable including a dielectric layer and a metallic layer; and a connector having a chip with a terminal. The connector includes a substrate having an organic layer, and a portion of the organic layer extends from the substrate so as to form the dielectric layer of the cable. The metallic layer is located on the dielectric layer and is directly connected to the terminal.
Abstract:
[Object] To provide an electrostatic device capable of improving device characteristics.[Solving Means] An electrostatic device according to an embodiment of the present technology includes an electrically conductive base material, a first conductor layer, a second conductor layer, and a bonding layer. The first conductor layer includes a first electrode portion and a first base portion and is connected to a signal line. The first base portion supports the first electrode portion and is disposed on the base material. The second conductor layer includes a second electrode portion and a second base portion and is connected to a reference potential. The second electrode portion is opposed to the first electrode portion in a first axis direction and configured to be movable relative to the first electrode portion in the first axis direction. The second base portion supports the second electrode portion and is disposed on the base material. The bonding layer is disposed between the base material and the first and second base portions and includes a plurality of first bonding portions that partially support at least the first base portion.