Abstract:
The various implementations described herein include systems, methods and/or devices used to manage heat flow for dissipating heat generated by electronic components in an electronic system (e.g., a memory system that includes closely spaced memory modules). In one embodiment, heat sinks are disposed on front sides of a first module and a second module in the electronic system, and at least one heat sink in the second module is disposed between at least two heat sinks in the first module. In some embodiments, the number of heat sinks and/or a subset of geometric parameters for the locations, sizes and shapes of the heat sinks are configured for the purpose of disturbing and mixing air flow that passes an air gap between the front sides of the first and second modules.
Abstract:
Various embodiments described herein include systems, methods and/or devices for dissipating heat generated by electronic components in an electronic system (e.g., a memory system that includes closely spaced memory modules). In one aspect, an electronic assembly includes a first circuit board, a second circuit board flexibly coupled to the first circuit board, a connecting module coupled to the second circuit board, and a fastener. The fastener is configured to couple the first circuit board to the connecting module such that the first circuit board and the second circuit board are substantially parallel and are separated by a space, wherein the space forms at least part of a channel that is configured to direct airflow through the space between the first circuit board, second circuit board, and connecting module.
Abstract:
Various embodiments described herein disclose systems, methods and/or devices used to dissipate heat generated by electronic components of an electronic assembly that further includes a first assembly rail, a top circuit board and a bottom circuit board. The first assembly rail includes a first card guide structure and a second card guide structure that are arranged on a first side of the first assembly rail near two opposite ends of the assembly rail. The top and the bottom circuit boards are mechanically coupled to the first and second card guide structures of the first assembly rail, respectively. The top circuit board is parallel to the bottom circuit board, and separated from the bottom circuit board by a predefined distance. The first assembly rail, the top circuit board and the bottom circuit board together form a channel there between for receiving a heat dissipating airflow.
Abstract:
Various embodiments described herein include systems, methods and/or devices used to dissipate heat generated by electronic components in an electronic system (e.g., a memory system that includes closely spaced memory modules). In one aspect, an electronic assembly includes a first circuit board with one or more heat generating components coupled thereto. The electronic assembly further includes a second circuit board with one or more heat sensitive components coupled thereto. The electronic assembly also includes a thermal barrier interconnect. The thermal barrier interconnect electrically couples the first circuit board to the second circuit board. In some embodiments, thermal barrier interconnect is a flexible interconnect with a lower thermal conductivity than the first circuit board and the second circuit board. The thermal barrier interconnect forms a thermal barrier between the first and second circuit boards which protects the heat sensitive components from the heat generating components.
Abstract:
Various embodiments described herein include systems, methods and/or devices used to dissipate heat generated by electronic components in an electronic system (e.g., a memory system that includes closely spaced memory modules). In one aspect, an electronic system includes a substrate, at least one electronic component, and a heat sink. The at least one electronic component is mechanically coupled to the substrate and thermally coupled to a ground plane of the substrate, such that heat generated by the at least one electronic component is dissipated at least partially to the ground plane of the substrate. The heat sink is mechanically coupled to an edge of the substrate, and thermally coupled to the ground plane of the substrate to at least partially dissipate the heat generated by the at least one electronic component. In some embodiments, the heat sink further includes an attachment structure, a tab and a plurality of heat dissipaters.
Abstract:
The system for redirecting airflow includes multiple electronic assemblies arranged adjacent to one another. Each electronic assembly includes a substrate having a substantially flat first surface and an opposing substantially flat second surface. Electronic devices are coupled to each of the first and second surfaces. Each surface also has one or more tabs coupled thereto, where each tab is configured to redirect the airflow over a least one electronic device.
Abstract:
Various embodiments described herein include systems, methods and/or devices for dissipating heat generated by electronic components in an electronic system (e.g., a memory system that includes closely spaced memory modules). In one aspect, an electronic assembly includes a first circuit board, a second circuit board flexibly coupled to the first circuit board, a connecting module coupled to the second circuit board, and a fastener. The fastener is configured to couple the first circuit board to the connecting module such that the first circuit board and the second circuit board are substantially parallel and are separated by a space, wherein the space forms at least part of a channel that is configured to direct airflow through the space between the first circuit board, second circuit board, and connecting module.
Abstract:
The various implementations described herein include systems, methods and/or devices used to manage heat flow for dissipating heat generated by electronic components in an electronic system (e.g., a memory system that includes closely spaced memory modules). In one embodiment, heat sinks are disposed on front sides of a first module and a second module in the electronic system, and at least one heat sink in the second module is disposed between at least two heat sinks in the first module. In some embodiments, the number of heat sinks and/or a subset of geometric parameters for the locations, sizes and shapes of the heat sinks are configured for the purpose of disturbing and mixing air flow that passes an air gap between the front sides of the first and second modules.
Abstract:
Various embodiments described herein include systems, methods and/or devices used to dissipate heat generated by electronic components in an electronic system (e.g., a memory system that includes closely spaced memory modules). In one aspect, an electronic system includes a substrate, at least one electronic component, and a heat sink. The at least one electronic component is mechanically coupled to the substrate and thermally coupled to a ground plane of the substrate, such that heat generated by the at least one electronic component is dissipated at least partially to the ground plane of the substrate. The heat sink is mechanically coupled to an edge of the substrate, and thermally coupled to the ground plane of the substrate to at least partially dissipate the heat generated by the at least one electronic component. In some embodiments, the heat sink further includes an attachment structure, a tab and a plurality of heat dissipaters.
Abstract:
Various embodiments described herein disclose systems, methods and/or devices used to dissipate heat generated by electronic components of an electronic assembly that further includes a first assembly rail, a top circuit board and a bottom circuit board. The first assembly rail includes a first card guide structure and a second card guide structure that are arranged on a first side of the first assembly rail near two opposite ends of the assembly rail. The top and the bottom circuit boards are mechanically coupled to the first and second card guide structures of the first assembly rail, respectively. The top circuit board is parallel to the bottom circuit board, and separated from the bottom circuit board by a predefined distance. The first assembly rail, the top circuit board and the bottom circuit board together form a channel there between for receiving a heat dissipating airflow.