Abstract:
A spring finger interconnection system can include a plug and a receptacle. In one embodiment, the plug can include spring finger contacts configured to carry electrical signals. The receptacle can include a cavity to receive the plug and the cavity can be constructed with printed circuit board fabrication techniques. In one embodiment, the cavity can be formed, at least in part, in a pre-impregnation layer and a first and a second layer can be disposed above and below the pre-impregnation layer to further form the cavity. In one embodiment, contacts can be arranged on the first layer to contact the spring fingers when the plug is inserted into the cavity. In another embodiment, contacts can be arranged on both the first and the second layers. In yet another embodiment, the cavity can be shaped to aid in contact-to-spring finger alignment when the plug is inserted in the cavity.
Abstract:
The described embodiments relate generally to electronic components and more specifically to a capacitor array that can increase component density on a printed circuit board and reduce a distance to a ground plane. An array of capacitors can be formed by coupling a group of capacitors on their sides interspersed with interposer boards. The resulting configuration can increase component density and reduce an amount of resistance and effective series inductance between a set of power decoupling capacitors and an integrated circuit.
Abstract:
A method and apparatus is described for forming and using a stiffener for the production of thinned integrated circuits. In one embodiment, a handle can be bonded to an integrated circuit wafer before the wafer is thinned. Electrical couplings such as mounting balls can be attached to the wafer. Individual dice can be singulated from the wafer by dicing through the wafer and the handle, producing a wafer/handle assembly. The wafer/handle assembly can be mounted to a printed circuit board before the handle is de-bonded.
Abstract:
A method for disclosing an integrated circuit embedded in a resin is disclosed. In one embodiment, stabilizing vias can be formed within the resin and can couple to corresponding pads in the integrated circuit. The stabilizing vias can be used in areas prone to failure when the combined resin/integrated circuit is stressed or undergoes some amount of displacement. In one embodiment, the stabilizing vias can be non-functional vias that do not carry electrical signals or power to or from the integrated circuit.
Abstract:
Stacked arrays of components are disclosed. In one embodiment, a first and a second layer of components are electrically and mechanically coupled to a thin interposer disposed between the first and second layers. The first layer can be configured to attach the stacked array to a host printed circuit board. The interposer can insulate the components from one another and also couple signals between the components on the first and second layers. In one embodiment, the components in the first and second layers are passive components.
Abstract:
Stacked arrays of components are disclosed. In one embodiment, a first and a second layer of components are electrically and mechanically coupled to an interposer with an encapsulated third layer of components disposed between the first and second layers. The first layer can be configured to attach the stacked array to a host printed circuit board. The interposer can couple signals between the components on the first and second layers.