Abstract:
A semiconductor package with a heat dissipating structure is provided. The heat dissipating structure includes a flat portion, and a plurality of support portions formed at edge comers of the flat portion for supporting the flat portion above a chip mounted on a substrate. The support portions are mounted at predetermined area on the substrate without interfering with arrangement of the chip and bonding wires that electrically connect the chip to the substrate. The support portions are arranged to form a space embraced by adjacent supports and the flat portion, so as to allow the bonding wires to pass through the space to reach area on the substrate outside coverage of the heat dissipating structure; besides, passive components or other electronic components can be mounted on the substrate at area within or outside the coverage of the heat dissipating structure, thereby improving flexibility in component arrangement in the semiconductor package.
Abstract:
A ball grid array semiconductor package is proposed, wherein at least a chip is mounted on a substrate, and signal pads on the chip are electrically connected to signal fingers on the substrate by bonding wires. A power plate and a ground plate are each attached at two ends thereof respectively to predetermined positions on the chip and substrate, without interfering with the bonding wires. No power ring or ground ring is necessarily formed on the substrate, thereby reducing restriction on trace routability of the substrate. Further, with no provision of power wires or ground wires, short circuit of the bonding wires is less likely to occur, and thus production yield is enhanced. In addition, the power plate and ground plate provide shielding effect for protecting the chip against external electric-magnetic interference, and are partly in direct contact with the atmosphere for improving heat dissipating efficiency of the semiconductor package.
Abstract:
A stacked dual-chip semiconductor packaging technology is proposed for the packaging of two semiconductor chips in one single package unit. The proposed dual-chip semiconductor package is characterized by an intercrossedly-stacked dual-chip arrangement which is constructed on a specially-designed leadframe having a supporting frame; a die pad supported on the supporting frame and having a peripherally-located upper portion and a centrally-located downset portion; and a set of leads linked to the supporting frame and arranged around the die pad. By the proposed packaging technology, a first semiconductor chip is mounted within the downset portion of the die pad, while a second semiconductor chip is mounted on the upper portion of the die pad in an intercrossedly-stacked manner in relation to the first semiconductor chip. Compared to the prior art, the proposed technology allows the packaging process to be implemented in a less complex and more cost-effective manner. Moreover, since the underlying chip is attached to die pad, it allows an increased heat-dissipation efficiency to the semiconductor package.
Abstract:
A semiconductor package with stacked chips is proposed, in which a first chip mounted on and electrically connected to a chip carrier is attached with a rigid interposer thereto, while the rigid interposer has a second chip disposed thereon in a manner that the rigid interposer is interposed between the first chip and the second chip. With the use of the rigid interposer, the second chip stacked on the first chip can be positioned in planarily parallel to the chip carrier, allowing bonding wires for electrically connecting the second chip to the chip carrier to be bonded completely. Moreover, the second chip has portions thereof not located right above the first chip to be firmly supported by the rigid interposer, and thus the second chip can be prevented from cracking in the wire bonding process. Furthermore, on the chip carrier there is formed an encapsulant for encapsulating the first chip, the second chip and part of the chip carrier where the first and second chips are electrically connected thereto,
Abstract:
A method for fabricating a ground-ball bonding structure on a TBGA package is proposed, which is characterized by the forming of a plurality of air vents around the ground-ball pad and cut all the way into the tape until reaching the bottommost surface of the tape. During solder-reflow process, this allows the trapped air in the via hole due to solder material being filled into the via hole to the outside atmosphere during solder-reflow process. Compared to the prior art, since the proposed method allows substantially no air-filled voids to be left in the via hole, the resulted ground ball would be fully collapsed against the heat sink and therefore coplanarized with respect to the signal ball. The coplanarity of the overall ball grid array would allow the TBGA package to be mounted properly onto a printed circuit board during SMT (Surface Mount Technology) process. In addition, the proposed method allows a reliable bonding between the ground ball and the heat sink thus assuring the grounding effect of the resulted TBGA package.
Abstract:
A semiconductor device and a manufacturing process thereof are proposed. With no use of a substrate or leads, the foregoing semiconductor device has a chip with its surfaces being exposed to the outside of the device, allowing the overall thickness of the device to be significantly minimized, and the heat-dissipating efficiency to be greatly improved, as well as the manufacturing process and cost to be simplified and reduced respectively. Moreover, unlike a conventional semiconductor device, the semiconductor device is manufactured without using a specific mold with protrusions, a drill or a laser beam, so that the manufacturing cost is further reduced, and crack in the encapsulant as well as flash during molding are prevented.
Abstract:
A semiconductor package with a heat sink is provided. At least one chip and a heat sink attached to the chip are mounted on a substrate. At least one slot is formed through at least one corner of the heat sink at a position attached to the substrate. An adhesive material is applied between the heat sink and substrate and over filled in the slot with an overflow of the adhesive material out of the slot. The adhesive material over filled in the slot provides an anchoring effect and increases its contact area with the heat sink to thereby firmly secure the heat sink on the substrate. Further, the slot formed at the corner of the heat sink can alleviate thermal stresses accumulated at the corner of the heat sink and thereby prevent delamination between the heat sink and the substrate.
Abstract:
A semiconductor package having conductive bumps on a chip and a fabrication method thereof are provided. A plurality of the conductive bumps are deposited respectively on bond pads of the chip. An encapsulation body encapsulates the chip and conductive bumps while exposing ends of the conductive bumps. A plurality of conductive traces are formed on the encapsulation body and electrically connected to the exposed ends of the conductive bumps. A solder mask layer is applied over the conductive traces and formed with openings for exposing predetermined portions of the conductive traces. The exposed portions of the conductive traces are connected to a plurality of solder balls respectively. The conductive bumps on the bond pads of the chip allow easy positional recognition of the bond pads, making the conductive traces well electrically connected to the bond pads through the conductive bumps and assuring the quality and reliability of the semiconductor package.
Abstract:
A BGA (ball grid array) package with enhanced electrical and thermal performance, and a method for fabricating the BGA package, are proposed. This BGA package is characterized by the use of a power-connecting heat spreader and a ground-connecting heat spreader, which are respectively used to electrically connect power pad and ground pad to a packaged chip as well as to dissipate heat generated by the chip during operation. The ground-connecting heat spreader is arranged to entirely cover the chip, and thereby provides good shielding effect for the chip, which helps improve electrical performance of the chip during operation. Further, the ground-connecting heat spreader is partly exposed to outside of an encapsulation body that encapsulates the chip, by which satisfactory heat-dissipation efficiency can be achieved.
Abstract:
A QFN semiconductor package and a fabrication method thereof are proposed, wherein a lead frame having a plurality of leads is adopted, and each lead is formed at its inner end with a protruding portion. A wire bonding region and a bump attach region are respectively defined on opposite surfaces of the protruding portion, and staggered in position. This allows a force applied from a wire bonder to the wire bonding regions not to adversely affect solder bumps implanted on the bump attach regions, so that the solder bumps can be structurally assured without cracking. Moreover, the wire bonding regions spaced apart from the bump attach regions can be prevented from being contaminated by an etching solution used in solder bump implantation, so that wire bonding quality can be well maintained.