High-productivity porous semiconductor manufacturing equipment
    1.
    发明授权
    High-productivity porous semiconductor manufacturing equipment 有权
    高效多孔半导体制造设备

    公开(公告)号:US08999058B2

    公开(公告)日:2015-04-07

    申请号:US12774667

    申请日:2010-05-05

    Abstract: This disclosure enables high-productivity fabrication of semiconductor-based separation layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers), optical reflectors (made of multi-layer/multi-porosity porous semiconductors such as porous silicon), formation of porous semiconductor (such as porous silicon) for anti-reflection coatings, passivation layers, and multi-junction, multi-band-gap solar cells (for instance, by forming a variable band gap porous silicon emitter on a crystalline silicon thin film or wafer-based solar cell). Other applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further the disclosure is applicable to the general fields of Photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.

    Abstract translation: 本公开使得能够高生产率地制造基于半导体的分离层(由单层或多层多孔半导体(例如多孔硅,包括单孔隙率或多孔度层构成),光反射器(由多层/多孔多孔半导体 孔隙度多孔半导体如多孔硅),用于防反射涂层的多孔半导体(例如多孔硅)的形成,钝化层和多结的多带隙太阳能电池(例如,通过形成可变带隙 晶体硅薄膜或晶圆太阳能电池上的多孔硅发射器)。 其他应用包括制造用于脱模和MEMS器件制造,膜形成和浅沟槽隔离(STI)多孔硅的MEMS分离和牺牲层(使用具有最佳孔隙率并随后氧化的多孔硅形成)。 此外,本公开可应用于光伏,MEMS(包括传感器和致动器)的独立或集成半导体微电子,半导体微电子芯片和光电子学的一般领域。

    High Efficiency Solar Cells and Manufacturing Methods
    2.
    发明申请
    High Efficiency Solar Cells and Manufacturing Methods 有权
    高效太阳能电池和制造方法

    公开(公告)号:US20080047601A1

    公开(公告)日:2008-02-28

    申请号:US11841629

    申请日:2007-08-20

    CPC classification number: H01L31/03529 H01L31/07 Y02E10/50

    Abstract: A Schottky contact photovoltaic energy conversion cell. The Schottky contact photovoltaic energy conversion cell comprises a flexible substrate and a first array of a plurality of closely-spaced microscale pillars connected to a first electrical cell contact. The pillars and the contact are formed of (or having a top) layer of a first Schottky metal material with a work function selected for efficiently collecting photogenerated electrons. The Schottky contact photovoltaic energy conversion cell further comprises a second array of a plurality of closely-spaced microscale pillars connected to a second electrical cell contact. The pillars and the contact are formed of (or having a top) layer of a second Schottky metal material with a work function selected for efficiently collecting photogenerated holes. The Schottky contact photovoltaic energy conversion cell further comprises a semiconductor absorber thin-film layer covering the first and second contacts and filling spaces among all the pillars, for creating photogenerated electrons and holes.

    Abstract translation: 肖特基接触光伏能量转换电池。 肖特基接触光伏能量转换单元包括柔性基板和连接到第一电单元接触件的多个紧密间隔的微米柱的第一阵列。 柱和接触由具有选择用于有效收集光生电子的功函数的第一肖特基金属材料(或具有顶部)层形成。 肖特基接触光伏能量转换单元还包括连接到第二电池触点的多个紧密间隔的微小柱的第二阵列。 支柱和接触由具有选择用于有效收集光生孔的功函数的(或具有顶部)第二肖特基金属材料层形成。 肖特基接触光伏能量转换单元还包括覆盖所有第一和第二触点和填充空间的半导体吸收体薄膜层,用于产生光生电子和空穴。

    Determining Information about Defects or Binning Defects Detected on a Wafer after an Immersion Lithography Process is Performed on the Wafer
    3.
    发明申请
    Determining Information about Defects or Binning Defects Detected on a Wafer after an Immersion Lithography Process is Performed on the Wafer 审中-公开
    确定在晶片上进行沉浸光刻工艺后在晶片上检测到的缺陷或分位缺陷的信息

    公开(公告)号:US20070280526A1

    公开(公告)日:2007-12-06

    申请号:US11420960

    申请日:2006-05-30

    CPC classification number: G01N21/9501 G01N21/4738 G06T7/001 G06T2207/30148

    Abstract: Various computer-implemented methods are provided. One computer-implemented method for determining information about a defect detected on a wafer after an immersion lithography (IL) process is performed on the wafer includes comparing inspection results for the defect to data in a defect library for different types of IL defects and determining the information about the defect based on results of the comparison. One computer-implemented method for binning defects detected on a wafer after an IL process is performed on the wafer includes comparing one or more characteristics of the defects to one or more characteristics of IL defects and one or more characteristics of non-IL defects. The method also includes binning the defects having one or more characteristics that substantially match the one or more characteristics of the IL defects and the non-IL defects in different groups.

    Abstract translation: 提供了各种计算机实现的方法。 在晶片上执行浸没光刻(IL)处理之后,确定关于在晶片上检测到的缺陷的信息的计算机实现方法包括将缺陷的检查结果与不同类型的IL缺陷的缺陷库中的数据进行比较,并且确定 基于比较结果的缺陷信息。 在晶片上执行IL处理之后,在晶片上检测到的缺陷的计算机实现方法包括将缺陷的一个或多个特征与IL缺陷的一个或多个特征以及非IL缺陷的一个或多个特征进行比较。 该方法还包括将具有基本上与不同组中的IL缺陷和非IL缺陷的一个或多个特征基本一致的一个或多个特性的缺陷合并。

    Process sequence for doped silicon fill of deep trenches
    9.
    发明授权
    Process sequence for doped silicon fill of deep trenches 有权
    深沟槽掺杂硅填充工艺顺序

    公开(公告)号:US07109097B2

    公开(公告)日:2006-09-19

    申请号:US11011550

    申请日:2004-12-14

    CPC classification number: C23C16/045 C23C16/24 H01L21/76232 H01L29/66181

    Abstract: A method for void free filling with in-situ doped amorphous silicon of a deep trench structure is provided in which a first fill is carried out in at a temperature, pressure and dopant to silane ratio such that film deposition occurs from the bottom of the trench upwards. By way of this first fill, step coverages well in excess 100% are achieved. In the second fill step, deposition is carried out under changed conditions so as to reduce the impact of dopant on deposition rate, whereby trench fill is completed at a deposition rate which exceeds the deposition rate of the first fill. In an application of this method to the formation of deep trench capacitor structures, the intermediate steps further including the capping of the void free filled trench with a thick layer of amorphous silicon, planarization of the wafer thereafter, followed by a thermal anneal to re-distribute the dopant within the filled trench. Thereafter, additional steps can be performed to complete the formation of the capacitor structure.

    Abstract translation: 提供了一种无空隙填充深沟槽结构的原位掺杂非晶硅的方法,其中在硅烷比例的温度,压力和掺杂剂下进行第一次填充,使得从沉积的底部发生膜沉积 向上。 通过这个第一次填充,达到100%以上的步骤覆盖率。 在第二填充步骤中,在改变的条件下进行沉积,以减少掺杂剂对沉积速率的影响,由此以超过第一填充物的沉积速率的沉积速率完成沟槽填充。 在这种方法应用于深沟槽电容器结构的形成中,中间步骤进一步包括无孔填充沟槽的覆盖,其中厚层非晶硅,之后对晶片进行平面化,随后进行热退火, 在填充的沟槽内分布掺杂剂。 此后,可以执行附加步骤以完成电容器结构的形成。

Patent Agency Ranking