Abstract:
A mesoporous, transition metal oxide material having an average pore diameter ranging from 2 to 20 nm, a basic surface character defined by an isoelectric point>pH 7, and a specific surface area greater than 50 m2/g can be incorporated into a NOx sensing device as a NOx film. The mesoporous, transition metal oxide material includes an oxide of yttrium, lanthanum and/or cerium, and can be formed using a surfactant-templated self-assembly process.
Abstract:
A method of forming a cladding portion of an optical fiber preform assembly includes positioning a glass core cane in a mold cavity and loading the mold cavity with silica glass soot. The silica glass soot is compressed in an axial direction as the vibratory energy is applied to the mold body to form a soot compact around the glass core cane, wherein the soot compact is the cladding portion of an optical fiber preform assembly and the glass core cane is a core portion of the optical fiber preform assembly.
Abstract:
A method of forming a cladding portion of an optical fiber preform assembly includes positioning a glass core cane in a mold cavity and loading the mold cavity with silica glass soot. The silica glass soot is compressed in an axial direction as the vibratory energy is applied to the mold body to form a soot compact around the glass core cane, wherein the soot compact is the cladding portion of an optical fiber preform assembly and the glass core cane is a core portion of the optical fiber preform assembly.
Abstract:
A mesoporous, transition metal oxide material having an average pore diameter ranging from 2 to 20 nm, a basic surface character defined by an isoelectric point>pH 7, and a specific surface area greater than 50 m2/g can be incorporated into a NOx sensing device as a NOx film. The mesoporous, transition metal oxide material includes an oxide of yttrium, lanthanum and/or cerium, and can be formed using a surfactant-templated self-assembly process.
Abstract:
A method and an apparatus for making an optical fiber preform comprising the steps of (i) depositing a plurality of rods are deposited into an inner cavity of an apparatus; (ii) depositing particulate glass material in the inner cavity between the rods and the inner wall; and (iii) applying pressure against the particulate glass material to pressurize the particulate glass material against the plurality of rods.
Abstract:
A method and apparatus for making an optical fiber preform. The apparatus has an outer wall and an inner wall. The outer wall surrounds the inner wall and the inner wall surrounds an inner cavity of the apparatus. A consolidated glass rod is deposited in the inner cavity after which particulate glass material, such as glass soot, is deposited in the inner cavity around the glass rod. A radially inward pressure is applied against the particulate glass material to pressurize the particulate glass material against the glass rod.
Abstract:
An optical fiber may be secured to a ferrule of an optical connector with an adhesive mixture. The optical fiber may be secured by preparing an adhesive mixture, disposing the adhesive mixture in a fiber-receiving passage defining an inner surface of the ferrule, inserting the optical fiber into the fiber-receiving passage and into contact with the adhesive mixture, and curing the adhesive mixture. The adhesive mixture may be prepared by forming a base mixture that includes a base solvent, an alkyltrialkoxysilane, an aryltrialkoxysilane, and an aryltrifluorosilane. The adhesive mixture may be cured by heating to a temperature of at least about 200° C. and cooling to room temperature or below.
Abstract:
Manufacturing an optical fiber by using an outside vapor deposition technique for making a substrate, applying one or more layers to the substrate using a radial pressing technique to form a soot blank, sintering the soot blank in the presence of a gaseous refractive index-modifying dopant, and drawing the sintered soot blank, provides a more efficient and cost effective process for generating complex refractive index profiles.
Abstract:
The invention is a solution impregnation and drying treatment that imparts a high temperature binder into an already formed porous green body composed of particulate batch material. The batch material includes inorganic compounds and binder. The result is reduced sag and distortion and the same or increased strength when the porous body is later fused during sintering/firing.
Abstract:
The invention is a solution impregnation and drying treatment that imparts a high temperature binder into an already formed porous green body composed of particulate batch material. The batch material includes inorganic compounds and binder. The result is reduced sag and distortion and the same or increased strength when the porous body is later fused during sintering/firing.