Abstract:
A manual apparatus of the present disclosure enables quick connection and disconnection of an exoskeleton leg from a remaining body of an exoskeleton. The apparatus comprises a cavity defined by a housing coupled to the remaining body of the exoskeleton; a latch coupled to the remaining body of the exoskeleton, the latch comprising a latching feature; a clip body including a projection element extending from an end thereof, the clip body coupled to the exoskeleton leg; a handle rotatably coupled to a clip base on the clip body; and a hook rotatably coupled to the handle. When the hook is engaged with the latching feature and the handle rotated from a first unlatched position to a second latched position, the projection element moves inside the cavity.
Abstract:
A trunk supporting exoskeleton comprises: a supporting trunk; thigh links configured to move in unison with a person's thighs; and first and second torque generators located on both left and right halves of the person substantially close to the person's hip. The torque generators couple the supporting trunk to the thigh links, and generate torque between the thigh links and the supporting trunk. When the person bends forward such that a predetermined portion of the supporting trunk passes beyond a predetermined angle from vertical, a torque generator(s) imposes a resisting torque between the supporting trunk and the thigh link(s), causing the supporting trunk to impose a force against the person's trunk, and the thigh link(s) to impose a force onto the person's thigh. When the predetermined portion does not pass beyond the predetermined angle, the torque generators impose no resisting torques between said supporting trunk and respective thigh links.
Abstract:
An exoskeleton (100) adapted to be coupled to a lower extremity of a person includes a thigh link (102), a shank link (104) and a knee joint (106) allowing flexion and extension between the thigh and shank links (102, 104). A torque generator (156) connected to the knee joint (106) includes a wrap spring (110) having a first end (112) coupled to the thigh link (102), and a second end (118) coupled to an electric actuator (116) capable of selectively positioning the second end (118) of the wrap spring (110). A controller (120) causes the electric actuator (116) to position the wrap spring (110) to provide a selective torque between the thigh and shank links (102, 104) based on a signal (212, 214, 216) produced by a sensor (164, 166, 168).
Abstract:
A trunk-supporting exoskeleton for reducing muscle forces in a wearer's back during forward lumbar flexion comprises a supporting trunk, a first thigh link, a second thigh link, and an actuator, which includes an actuator first element and an actuator second element. When the wearer is in a forward-bent position, the actuator generates a first torque on the actuator first element and a second actuator torque on the actuator second element to generate extension torques between the first and second thigh links and the supporting trunk, thereby resisting bending motion of the supporting trunk in the forward-bent position. When the wearer is not in the forward-bent position, the actuator generates a substantially small first torque and second torque, resulting in small resistance to the movement of the thigh links relative to the supporting trunk during walking.
Abstract:
A manual apparatus of the present invention enables quick connection and disconnection of an exoskeleton leg from a remaining body of an exoskeleton. The apparatus comprises a cavity defined by a housing coupled to the remaining body of the exoskeleton; a latch coupled to the remaining body of the exoskeleton, the latch comprising a latching feature; a clip body including a projection element extending from an end thereof, the clip body coupled to the exoskeleton leg; a handle rotatably coupled to a clip base on the clip body; and a hook rotatably coupled to the handle. When the hook is engaged with the latching feature and the handle rotated from a first unlatched position to a second latched position, the projection element moves inside the cavity.
Abstract:
Described herein is an arm supporting exoskeleton including a proximal link, a distal link, a torque generator, and a bracket. The distal link is configured to rotate relative to the proximal link about a first rotational axis forming a first angle between the proximal link and the distal link. The torque generator is configured to provide a torque profile between the proximal link and the distal link as a function of the first angle, thereby producing a supporting force onto the upper arm of the person. The bracket is coupled to one of the proximal link or the distal link. A location of the bracket is adjustable to adjust an effective length of the torque generator to adjust an amplitude of the torque profile provided by the torque generator thereby adjusting the supporting force onto the upper arm of the person.
Abstract:
An arm supporting exoskeleton comprises a shoulder base coupled to an arm link mechanism. The arm link mechanism comprises a proximal link and a distal link configured to rotate relative to each other about a rotating joint; at least one arm-coupler adapted to couple a user's arm to the distal link; a tensile force generator coupled to the proximal link and the distal link, and providing a torque to flex the distal link relative to the proximal link; and a protrusion located substantially at the rotating joint. When the distal link extends past a toggle angle, the protrusion constrains the tensile force generator, and the torque provided by the tensile force generator remains substantially small, When the protrusion does not constrain the tensile force generator, the torque tends to flex the distal link relative to the proximal link, thereby reducing human shoulder forces and torques required to raise the arm.
Abstract:
A passive artificial knee comprises first and second links rotatably coupled at a knee joint, a passive compressive force generator rotatably coupled to the second link, and a release mechanism coupled to the first link. When a relative angle of the first and second links is less than a toggle angle, the release mechanism locks in a first operational mode, and the force generator compresses, resisting the flexing of the second link relative to the first link. When the relative angle is larger than the toggle angle, the force generator decompresses and encourages the flexion of said second link relative to said first link. When the force generator is substantially extended and said compressive force is substantially small, the release mechanism moves into a second operational mode, wherein the force generator neither resists nor encourages the extension and flexion of said second link from said first link.
Abstract:
An arm supporting exoskeleton comprises a shoulder base coupled to an arm link mechanism. The arm link mechanism comprises a proximal link and a distal link configured to rotate relative to each other about a rotating joint; at least one arm-coupler adapted to couple a user's arm to the distal link; a tensile force generator coupled to the proximal link and the distal link, and providing a torque to flex the distal link relative to the proximal link; and a protrusion located substantially at the rotating joint. When the distal link extends past a toggle angle, the protrusion constrains the tensile force generator, and the torque provided by the tensile force generator remains substantially small. When the protrusion does not constrain the tensile force generator, the torque tends to flex the distal link relative to the proximal link, thereby reducing human shoulder forces and torques required to raise the user's arm.