Abstract:
Disclosed are metal nitride photocatalyst particles and/or metal oxynitride photocatalyst particles having high dispersibility. The metal nitride photocatalyst particles and/or metal oxynitride photocatalyst particles having high dispersibility can be obtained by containing metal nitride photocatalyst particles and/or metal oxynitride photocatalyst particles, which are capable of splitting water under visible light irradiation, and a phosphoric acid polymer that is adsorbed on the surface of the particles. Further, because these particles have high photocatalytic activity under visible light irradiation, splitting water by using these particles can generate hydrogen and/or oxygen with high efficiency.
Abstract:
Disclosed is a composite photocatalyst comprising photocatalyst particles for hydrogen generation and photocatalyst particles for oxygen generation that possess a high activity level of splitting water under visible light irradiation. Also disclosed is a photocatalytic member comprising a composite photocatalyst-containing photocatalytic layer fixed on a substrate. The composite photocatalyst comprises visible light responsive photocatalyst particles for hydrogen generation having a primary particle diameter of not more than 100 nm and visible light responsive photocatalyst particles for oxygen generation, the visible light responsive photocatalyst particles for hydrogen generation being in contact with the visible light responsive photocatalyst particles for oxygen generation.
Abstract:
A photocatalytic member comprises a base and a photocatalytic layer fixed on the base. The photocatalytic layer comprises first photocatalyst particles being visible light responsive photocatalyst particles for hydrogen generation, second photocatalyst particles being visible light responsive photocatalyst particles for oxygen generation, and conductive particles which are provided between the first photocatalyst particle and the second photocatalyst particle, have Fermi level at a negative position relative to an electronic energy level at the upper end of the valence band of the first photocatalyst particle and at a positive position relative to an electronic energy level at the bottom end of the conduction band of the second photocatalyst particle, and are able to store an electron and a hole. In the photocatalytic layer, the conductive particles are located to be coupled to both the first photocatalyst particles and the second photocatalyst particles.
Abstract:
Disclosed is a visible light responsive photocatalyst that simultaneously realizes high crystallinity and refinement of primary particles. Also disclosed is a photocatalyst composed of secondary particles that have a high porosity and are aggregates of fine primary particles. Rhodium-doped strontium titanate that is a visible light responsive photocatalyst of the present invention has a primary particle diameter of not more than 70 nm and has a absorbance at a wavelength of 570 nm of not less than 0.6 and a absorbance at a wavelength of 1800 nm of not more than 0.7, each absorbance determining by measuring a diffuse reflection spectrum, the rhodium-doped strontium titanate having a high water-splitting activity as a photocatalyst.
Abstract:
Disclosed is a visible light responsive photocatalyst that simultaneously realizes high crystallinity and refinement of primary particles. Also disclosed is a photocatalyst composed of secondary particles that have a high porosity and are aggregates of fine primary particles. Rhodium-doped strontium titanate that is a visible light responsive photocatalyst of the present invention has a primary particle diameter of not more than 70 nm and has a absorbance at a wavelength of 570 nm of not less than 0.6 and a absorbance at a wavelength of 1800 nm of not more than 0.7, each absorbance determining by measuring a diffuse reflection spectrum, the rhodium-doped strontium titanate having a high water-splitting activity as a photocatalyst.