Abstract:
The present invention provides a MOS transistor, including a substrate, a gate oxide, a gate, a source/drain region and a silicide layer. The gate oxide is disposed on the substrate and the gate is disposed on the gate oxide. The source/drain region is disposed in the substrate at two sides of the gate. The silicide layer is disposed on the source/drain region, wherein the silicide layer includes a curved bottom surface and a curved top surface, both the curved top surface and the curved bottom surface bend toward the substrate and the curved top surface is sunken from two sides thereof, two ends of the silicide layer point tips raised up over the source/drain region and the silicide layer in the middle is thicker than the silicide layer in the peripheral, thereby forming a crescent structure. The present invention further provides a manufacturing method of the MOS transistor.
Abstract:
A method of forming a semiconductor device is provided. A first interfacial material layer is formed by a deposition process on a substrate. A dummy gate material layer is formed on the first interfacial material layer. The dummy gate material layer and the first interfacial material layer are patterned to form a stacked structure. An interlayer dielectric (ILD) layer is formed to cover the stacked structure. A portion of the ILD layer is removed to expose a top of the stacked structure. The stacked structure is removed to form a trench in the ILD layer. A second interfacial layer and a first high-k layer are conformally formed at least on a surface of the trench. A composite metal layer is formed to at least fill up the trench.
Abstract:
A fin-shaped field-effect transistor process includes the following steps. A substrate is provided. A first fin-shaped field-effect transistor and a second fin-shaped field-effect transistor are formed on the substrate, wherein the first fin-shaped field-effect transistor includes a first metal layer and the second fin-shaped field-effect transistor includes a second metal layer. A treatment process is performed on the first fin-shaped field-effect transistor to adjust the threshold voltage of the first fin-shaped field-effect transistor. A fin-shaped field-effect transistor formed by said process is also provided.
Abstract:
A method of forming a semiconductor device is provided. A first interfacial material layer is formed by a deposition process on a substrate. A dummy gate material layer is formed on the first interfacial material layer. The dummy gate material layer and the first interfacial material layer are patterned to form a stacked structure. An interlayer dielectric (ILD) layer is formed to cover the stacked structure. A portion of the ILD layer is removed to expose a top of the stacked structure. The stacked structure is removed to form a trench in the ILD layer. A second interfacial layer and a first high-k layer are conformally foamed at least on a surface of the trench. A composite metal layer is formed to at least fill up the trench.
Abstract:
A method for fabricating a metal-gate CMOS device. A substrate having thereon a first region and a second region is provided. A first dummy gate structure and a second dummy gate structure are formed within the first region and the second region respectively. A first LDD is formed on either side of the first dummy gate structure and a second LDD is formed on either side of the second dummy gate structure. A first spacer is formed on a sidewall of the first dummy gate structure and a second spacer is formed on a sidewall of the second dummy gate structure. A first embedded epitaxial layer is then formed in the substrate adjacent to the first dummy gate structure. The first region is masked with a seal layer. Thereafter, a second embedded epitaxial layer is formed in the substrate adjacent to the second dummy gate structure.
Abstract:
A manufacturing method of MOS transistor, the MOS transistor includes a substrate, a gate oxide, a gate, a source/drain region and a silicide layer. The gate oxide is disposed on the substrate and the gate is disposed on the gate oxide. The source/drain region is disposed in the substrate at two sides of the gate. The silicide layer is disposed on the source/drain region, wherein the silicide layer includes a curved bottom surface and a curved top surface, both the curved top surface and the curved bottom surface bend toward the substrate and the curved top surface is sunken from two sides thereof, two ends of the silicide layer point tips raised up over the source/drain region and the silicide layer in the middle is thicker than the silicide layer in the peripheral, thereby forming a crescent structure. The present invention further provides a manufacturing method of the MOS transistor.
Abstract:
A non-planar semiconductor structure comprises a substrate, at least one fin structure on the substrate, a gate covering parts of the fin structures and part of the substrate such that the fin structure is divided into a channel region stacking with the gate and source/drain region at both sides of the gate, a plurality of epitaxial structures covering on the source/drain region of the fin structures, a recess is provided between the channel region of the fin structure and the epitaxial structure, and a spacer formed on the sidewalls of the gate and the epitaxial structures, wherein the portion of the spacer filling in the recesses is flush with the top surface of the epitaxial structures.
Abstract:
A manufacturing method of MOS transistor, the MOS transistor includes a substrate, a gate oxide, a gate, a source/drain region and a silicide layer. The gate oxide is disposed on the substrate and the gate is disposed on the gate oxide. The source/drain region is disposed in the substrate at two sides of the gate. The silicide layer is disposed on the source/drain region, wherein the silicide layer includes a curved bottom surface and a curved top surface, both the curved top surface and the curved bottom surface bend toward the substrate and the curved top surface is sunken from two sides thereof, two ends of the silicide layer point tips raised up over the source/drain region and the silicide layer in the middle is thicker than the silicide layer in the peripheral, thereby forming a crescent structure. The present invention further provides a manufacturing method of the MOS transistor.
Abstract:
A fin-shaped field-effect transistor process includes the following steps. A substrate is provided. A first fin-shaped field-effect transistor and a second fin-shaped field-effect transistor are formed on the substrate, wherein the first fin-shaped field-effect transistor includes a first metal layer and the second fin-shaped field-effect transistor includes a second metal layer. A treatment process is performed on the first fin-shaped field-effect transistor to adjust the threshold voltage of the first fin-shaped field-effect transistor. A fin-shaped field-effect transistor formed by said process is also provided.
Abstract:
The present invention provides a MOS transistor, including a substrate, a gate oxide, a gate, a source/drain region and a silicide layer. The gate oxide is disposed on the substrate and the gate is disposed on the gate oxide. The source/drain region is disposed in the substrate at two sides of the gate. The silicide layer is disposed on the source/drain region, wherein the silicide layer includes a curved bottom surface and a curved top surface, both the curved top surface and the curved bottom surface bend toward the substrate and the curved top surface is sunken from two sides thereof, two ends of the silicide layer point tips raised up over the source/drain region and the silicide layer in the middle is thicker than the silicide layer in the peripheral, thereby forming a crescent structure. The present invention further provides a manufacturing method of the MOS transistor.